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Motivation to study scattering of pions and kaons 

• π,K are Goldstone Bosons of QCD → Test Chiral Symmetry Breaking

• Much debated scalar meson resonances appear, in particular the f0(500), f0(980), 
f0(1370), f0(1500)  (in any channel with the lightest glueball) and also the K*0(700)
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• Light mesons not be the primordial interest of PANDA, but many processes with 
𝜋𝜋’s and K’s in final state of D, D*, ηc decays… or in processes like 
𝑝𝑝�̅�𝑝 →J/Ψ𝜋𝜋𝜋𝜋,𝜋𝜋𝜋𝜋𝜋𝜋,𝜋𝜋𝜋𝜋�𝜋𝜋, or D → 𝜋𝜋K, many three body decays with 𝜋𝜋’s and K’s, etc…

• Also interest in other waves, particularly the P-wave beyond the ρ(770)

• PANDA also claims to reach precision.

• π,K appear as final products of almost all hadronic processes:
Examples: B,D, decays, CP violation studies, etc…



Motivation ππ and πK SCATTERING data are poor
π and K are unstable. Still, beams can be made.

But NOT luminous enough for ππ and πK collisions: Indirect measurements

π π

ππ

NN

Chew-Low Extrapolation (see Gribov’s book Sect. 2.6.2)

Initial state not well defined, model dependent off-shell extrapolations
(OPE, absorption, A2 exchange...).
Needs Meson- N-partial wave extraction.  Problems with phase shift ambiguities, etc...

As a consequence… VERY LARGE SYSTEMATIC UNCERTAINTIES

1) From meson-Nucleon scattering



ππ scattering data. Example:  CERN Munich Experiment

SYSTEMATIC uncertainties larger than STATISTICAL

5 different ππ→ππ
analysis of same 
πp→ππn data !!

Systematic errors of 10o !!



Motivation

This talk:  

use DISPERSION RELATIONS to obtain data parameterizations:

Precise, consistent and EASY TO IMPLEMENT 

First problem:

CONFLICTING DATA SETS

From meson- Nucleon

π π → π π

ππ and πK SCATTERING data are often in conflict



Motivation ππ and πK SCATTERING data are bad
π and K are unstable. Still, beams can be made.

But NOT luminous enough for ππ and πK collisions: Indirect measurements

2) The only good data :From K→ππeν (“Kl4 decays”)

Pions on-shell.

Very precise

Geneva-Saclay (77),  E865 (01), NA48/2 (2010) 

BUT Limited: 
only  ππ→ππ

only δ00-δ11. 
only E<MK



Motivation: Resonances in meson-meson scattering

Usually, they are described by Breit-Wigner shapes

Which in the elastic case produce a typical phase shift rapid increase 
from 0 to 180 degrees that we have already found several times 

ρ(770)

f2(1275) K*(892)

These are easily identified…

~
𝑀𝑀 Γ(𝑠𝑠)

𝑀𝑀2 − 𝑠𝑠 − 𝑖𝑖𝑀𝑀 Γ(𝑠𝑠)



Motivation: Resonances in meson-meson scattering

Breit-Wigner shapes are easily recognizable…

But do you see resonances there?
Nevertheless there is a resonance (a pole) on each graph: 

the σ/f0(500) and the κ/K0*(800) light scalars



Non-ordinary spectroscopic classification

Scalar SU(3) multiplets identification controversial
Too many resonances for many years.

But there is an emerging picture…

f0

κ/K*0(700)

a0(980)

A Light scalar nonet:

f0 Singlet

Non-strange heavier!!
Inverted hierarchy problem

For quark-antiquark 

f0(500) and f0(980) are 
really OCTET/SINGLET mixtures

f0

K*0 (1430)

a0(1450)

+ Another
heavier scalar nonet:

f0 singlet f0

+ glueball

Enough f0 states have been observed: f0(500), f0(980), f0(1370), f0(1500), f0(1700). 
The whole picture is complicated by mixture between them (lots of works here)



Resonances as poles

The universal features of resonances are their 
pole positions and residues *

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≈M-i Γ/2

*in the Riemann sheet obtained from an analytic continuation through the physical cut

The Breit-Wigner shape is just an approximation for narrow and isolated resonances

s-plane Im s

Re s



Very wide Resonance = pole deep in complex plane

Need correct analytic continuation

SIMPLE MODELS (like BW, or worse) created a mess

Need for dispersive formalism (analyticity) and chiral symmetry also relevant.

PDG Situation 2010



σ
ρ

5002

σ ρ

Left cut due to 
Crossed channels
in scattering, not in

production

left cut and 
subthreshold region 

very close 

Threshold very close. Chiral behavior very relevant.Adler zero

Very deep
Re s ~ Im s

Why so much worries about low energy and CORRECT ANALYTIC STRUCTURE?

It is somewhat misleading to think of analyticity in terms of 𝑠𝑠

Since the partial wave is analytic in s ….

500

For the σ and κ a good control of the left cut and threshold region is important.
This is why dispersion relations (Roy-like equations) are so relevant for precise 

pole determinations.



Why so much worries LOW ENERGY and CORRECT ANALYTIC STRUCTURE?

𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

𝜋𝜋∗(892)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
zero

𝑠𝑠 − plane
(MeV2)

7002 8002 89020 (𝑚𝑚𝐾𝐾 −𝑚𝑚𝜋𝜋 )2

|s|=𝑚𝑚𝐾𝐾
2 − 𝑚𝑚𝜋𝜋
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Analyticity is expressed in the s-variable, not in 𝑠𝑠

Important for
the 𝜅𝜅/𝜋𝜋0∗(700)

• Threshold behavior (Theory: chiral symmetry)

• Subthreshold behavior (Theory: chiral symmetry →Adler zeros)

• Other cuts (Theory: Left & circular)

𝜅𝜅/𝜋𝜋0∗(700)

Thus, LOW ENERGY behavior and ANALYTICITY crucial for the 𝜋𝜋0∗(700)

NO LASS data here
Just 2 Estabrooks points 
with huge uncertainties LASS data 



What is a dispersion relation.?    Very Briefly and for π π

CAUSALITY:
Partial waves t(s) are ANALYTIC in complex s plane
with cuts due to thresholds (also in crossed channels)

Cauchy Theorem determines t(s) at ANY s, 
from an INTEGRAL on the contour

If t->0 fast enough at high s, curved part vanishes

Otherwise, determined up to polynomial (subtractions)

Good for: 1) Calculating t(s) where there is not data

2) Constraining data analysis

3) ONLY MODEL INDEPENDENT extrapolation to complex s-plane

We can calculate t(s) 
anywhere we want using 

the same integral expression



Roy Eqs. vs. Forward Dispersion Relations

So,  we need to get rid of ONE VARIABLE 
to write CAUCHY THEOREM in terms of the other one

1) Fix one variable in terms of the other 
(fixed-t, hyperbolic relations…)

2) Integrate one variable and keep the other 
(partial wave dispersión relations)



Single variable Dispersion Relations (DR)

1) Fixed-t Dispersion Relations (or fixed-s)  for T(s,t0)

Simple analytic structure in s-plane, simple derivation and use 

Left cut: With crossing may be rewritten in terms of physical region

One equation per amplitude. 
High Energy part very well known since Forward Amplitude~ Total cross section

Positivity in the integrand contributions, good for precision.

Calculated up to 1400 MeV (ππ) or 1.7 GeV (πK)

Not practical for unphysical sheets

Most popular: t0=0, FORWARD DISPERSION RELATIONS (FDRs).
(Kaminski, Pelaez , Yndurain, Garcia Martin, Ruiz de Elvira, Rodas )



Forward dispersion relations for π π.

Complete isospin set of 3 forward dispersion relations for : 

Two s-u symmetric amplitudes. F0+≡ π0π+→π0π+, F00 ≡π0π0 →π0π0

ONE SUBTRACTION
Only depend on two isospin states. Positivity of imaginary part
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Additional sum rules SRJ, SRK  if evaluated at s=2Mπ
2 (Adler Zeros),

The It=1 s-u antisymmetric amplitude
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At threshold is the Olsson sum rule



Single variable Dispersion Relations (DR)

Partial-wave Dispersion Relations

Analytic structure complicated if unequal masses (Circular cuts)

Left cut: With crossing may be rewritten in terms of physical region. 

But then different partial waves coupled. 

In practice, limited to a finite energy. 

But good and simple for elastic resonance poles



Due to elastic unitarity: 

𝑆𝑆𝐼𝐼𝐼𝐼(𝑠𝑠) =
1

𝑆𝑆𝐼𝐼(𝑠𝑠)

The second sheet is then: 𝒕𝒕𝑰𝑰𝑰𝑰(𝒔𝒔) =
𝒕𝒕𝑰𝑰(𝒔𝒔)

𝟏𝟏 + 𝟐𝟐𝟐𝟐𝝈𝝈 𝒕𝒕𝑰𝑰(𝒔𝒔)

Recalling S 𝑠𝑠 = 1 + 2𝑖𝑖𝜎𝜎 𝑡𝑡 𝑠𝑠 , 𝜎𝜎 𝑠𝑠 =
𝑘𝑘

2 𝑠𝑠

For elastic partial waves the second Riemann sheet is easy to obtain.

The second Riemann sheet in the elastic case

Looking for resonance poles
is nothing but looking for a zero in that denominator
on the first Riemann sheet accesible with the pw DR



The real improvement: Analyticity (and Effective Lagrangians)

Unitarized ChPT 90’s Truong, Dobado, Herrero, JRP, Oset, Oller, Ruiz Arriola, Nieves, Meissner,…

Uses Chiral Perturbation Theory amplitudes inside dispersion relation.

Relatively simple, although different levels of rigour.  Generates all scalars

Crossing (left cut) approximated… , not so good for precisión but good for connecting with QCD

Roy-like equations.  70’s Roy, Basdevant, Pennington, Petersen…

00’s Ananthanarayan, Caprini, Colangelo, Gasser, Leutwyler, Moussallam, Decotes Genon, Lesniak, Kaminski, JRP…

Left cut implemented with precision . Use data on all waves + high energy . 

Optional: ChPT predictions for subtraction constants

The most precise and model independent pole determinations

f0(500) and K0*(800) existence, 
mass and width

firmly established with precision



Roy-like Eqs. Derivation sketch

2) Write fixed-t dispersion relations and project them in partial waves. 
Limited to s≤ 68 mπ

2 ~ O(1.1) GeV (More complicated extensions exist)

3) Use 𝑠𝑠 ↔ 𝑢𝑢 crossing symmetry to re-write:

• left cut in terms of partial wave expansions of the other channels. 
But crossed channels are also ππ→ππ. Coupled equations.

• Subtraction terms

1) Choose the number of subtractions (2=Roy, 1=GKPY)

Complications for πK→πK (Roy-Steiner Eqs). Also for πN and γγ→ππ)

2) Different masses. Better use “hyperbolic” Dispersion Relations for larger 
applicability domain.

3) Crossing involves other processes (ππ→KK). More equations coupled.

4) Truncate for low energy and low pw. The rest is input (driving terms)
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Structure of Roy vs. GKPY Eqs.

Both are coupled channel equations for the infinite partial waves:
I=isospin 0,1,2 , l =angular momentum 0,1,2….

Partial wave
on

real axis

SUBTRACTION
TERMS

(polynomials)

2nd order 

1st order 

More energy suppressed

Less energy suppressed

Very small

small

ROY:

GKPY:

DRIVING 
TERMS

(truncation)
Higher waves

and High energy

“IN (from our data parametrizations)”“OUT” =?

KERNEL TERMS
known



Two strategies

SOLVE equations: (Ananthanarayan, Colangelo, Gasser, Leutwyler, Caprini, Moussallam, Stern…)

S and P wave solution for Roy or GKPY equations unique at low energy    if high-
energy, higher waves and scattering lengths known. (in isospin limit)

NO scattering DATA used at low energies ( 𝑠𝑠 ≤ 0.8 ~1 𝐺𝐺𝐴𝐴𝐺𝐺)

Good if interested in low energy scattering and do not trust data.

Uses ChPT input for threshold parameters

Impose Dispersion Relations on fits to data. (García-Martín, Kaminski,JRP, Ruiz de Elvira, Ynduráin)

Use any functional form and fit to DATA imposing DR within uncertainties.

Also needs input on other waves and high energy.

(But you can use physical inspiration for clever choices of parameterizations)



Our series of works: 2005-2011

Independent and simple fits 
to data in different channels.

“Unconstrained Data Fits=UDF”

R. Kaminski, JRP, F.J. Ynduráin Eur.Phys.J.A31:479-484,2007. PRD74:014001,2006
JRP ,F.J. Ynduráin. PRD71, 074016 (2005) , PRD69,114001 (2004), 
R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira, F.J. Ynduráin, Phys.Rev. D83 (2011) 074004, 
R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira ,Phys.Rev.Lett. 107 (2011) 072001



Simple UNconstrained Fits to Data: P wave, IJ=11

Simple fits easy to write down for phase shifts and inelasticities
For P,S2,D0,D2,anf F waves



UNconstrained Fits for High energies

JRP, F.J.Ynduráin. PRD69,114001 (2004)Regge parametrizations of data

Factorization

For simplicity we use

To be discussed later…



The complicated wave is the S0 wave (IJ=00)

Average data

Fit individual sets

We have already seen the data is a mess…. Only Kl4 reliable

Always include Kl4, but two possibilities:



The S0 wave. Different sets

Fits to different sets including also Kl4 data

Note size of
uncertainty

in data
at 800 MeV!!



S0 wave: UNconstrained fit to data (UFD).  

Global fit, averaging all sets where they roughly coincide



S0 wave: DIP vs NO DIP inelasticity scenarios

Longstanding controversy for inelasticity : (Pennington, Bugg, Zou, Achasov….)

There are inconsistent data sets for the inelasticity above 1 GeV 
near the f0(980) region 

... whereas others do notSome prefer a “dip” structure…



Our series of works: 2005-2011

Independent and simple fits 
to data in different channels.

“Unconstrained Data Fits=UDF”

Check Dispersion Relations 

R. Kaminski, JRP, F.J. Ynduráin Eur.Phys.J.A31:479-484,2007. PRD74:014001,2006
JRP ,F.J. Ynduráin. PRD71, 074016 (2005) , PRD69,114001 (2004), 
R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira, F.J. Ynduráin, Phys.Rev. D83 (2011) 074004, 
R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira ,Phys.Rev.Lett. 107 (2011) 072001



How well the Dispersion Relations are satisfied by unconstrained fits

We define an averaged χ2 over these points, that we call d2

Every 25 MeV we look at the difference between both sides of the DR
divided by the uncertainty

d2 close to 1 means that the relation is well satisfied

d2>> 1 means the data set is inconsistent with the relation.

This is NOT a fit to the relation, just a check of the fits!!. 



How well the Dispersion Relations are satisfied by unconstrained fits

Only TWO FDRs involve the S0 wave
The 00 FDR is very sensitive

Some S0 data sets are very 
incompatible with FDR below 
900 MeV
Considered clearly 
inconsistent and discarded 

Dispersion Relations can be useful to discard conflicting data sets
Despite nice-looking fits, analytic properties WRONG.
Careful with extrapolations to complex plane 

Lessons: 

Other sets, not so badly. Do 
not discad them but 
ROOM FOR IMPROVEMENT



Forward Dispersion Relations  for UNCONSTRAINED fits

FDRs averaged d2

π0π0 0.31              2.13

π0π+ 1.03              1.11

It=1           1.62              2.69

<932MeV   <1400MeV 

NOT GOOD! In the intermediate  
region. Need improvement



Roy Eqs. for  UNCONSTRAINED fits

Roy Eqs. averaged d2

GOOD! But room for improvement

S0wave         0.64              0.56

P wave          0.79              0.69

S2 wave        1.35              1.37

<932MeV      <1100MeV 



GKPY Eqs. for  UNCONSTRAINED fits

Roy Eqs. averaged d2

S0wave         1.78              2.42

P wave         2.44              2.13

S2 wave        1.19              1.14

<932MeV      <1100MeV 

Pretty bad. GKPY  Eqs are much stricter
Lots of room for improvement



Our series of works: 2005-2011

Independent and simple fits 
to data in different channels.

“Unconstrained Data Fits=UDF”

Check Dispersion Relations 

Impose FDRs, Roy & GKPY Eqs
on data fits

“Constrained Data Fits CDF”
Describe data and are consistent with Dispersion relations

R. Kaminski, JRP, F.J. Ynduráin Eur.Phys.J.A31:479-484,2007. PRD74:014001,2006
JRP ,F.J. Ynduráin. PRD71, 074016 (2005) , PRD69,114001 (2004), 
R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira, F.J. Ynduráin, Phys.Rev. D83 (2011) 074004, 
R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira ,Phys.Rev.Lett. 107 (2011) 072001

Some sets discarded
Others, room for improvement



Imposing FDR’s, Roy Eqs., GKPY Eqs. and crossing sum rules

To improve our fits, we can IMPOSE FDR’s,  Roy Eqs.  GKPY Eqs. and some SRs

W roughly counts the number of effective degrees of freedom 
(sometimes we add weight on certain energy regions)

3 FDR’s 3 GKPY Eqs.

Sum Rules for
crossing

Parameters of the 
unconstrained  data fits 
(could be data directly)

3 Roy Eqs.

We obtain CONSTRAINED FITS TO DATA (CFD) by minimizing:

𝜒𝜒2=𝑊𝑊 𝐴𝐴00
2 + 𝐴𝐴0+

2 + 𝐴𝐴𝐼𝐼𝐼𝐼=1
2 + 𝐴𝐴𝑆𝑆0𝑅𝑅𝑅𝑅𝑅𝑅

2 + 𝐴𝐴𝑆𝑆2𝑅𝑅𝑅𝑅𝑅𝑅
2 + 𝐴𝐴𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

2 + 𝐴𝐴𝑆𝑆0𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
2 + 𝐴𝐴𝑆𝑆2𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

2 + 𝐴𝐴𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
2

+ 𝐴𝐴𝑆𝑆𝑆𝑆𝐽𝐽
2 + 𝐴𝐴𝑆𝑆𝑆𝑆𝐺𝐺

2 + �
𝑘𝑘

(𝑝𝑝𝑘𝑘 − 𝑝𝑝𝑘𝑘
𝑝𝑝𝑒𝑒𝑝𝑝)2

𝛿𝛿𝑝𝑝𝑘𝑘2



Imposing FDRs and Sum rules

After imposing FDRs and SRs
The resulting fits differ by less than ~1σ -1.5 σ from original unconstrained fits

Remarkable 
improvement
in 00 FDR

But some sets
cannot be made 

to satisfy SR:
DISCARDED

Fit C included within uncertainties of “Global Fit”.

So we keep the “Global Fit”



Forward Dispersion Relations  for CONSTRAINED fits

FDRs averaged d2

π0π0 0.32              0.51

π0π+ 0.33              0.43

It=1           0.06              0.25

<932MeV   <1400MeV 

VERY GOOD!!!



Roy Eqs. for  CONSTRAINED fits

Roy Eqs. averaged d2

S0wave         0.02              0.04

P wave          0.04              0.12

S2 wave        0.21              0.26

<932MeV      <1100MeV 

VERY GOOD!!!



GKPY Eqs. for  CONSTRAINED fits

Roy Eqs. averaged d2

S0wave         0.23              0.24

P wave          0.68              0.60

S2 wave        0.12              0.11

<932MeV      <1100MeV 

VERY GOOD!!!



S0 wave: from UFD to CFD

Only sizable
change in 
f0(980) 
region

Dip solution 
preferred



From UFD to CFD

As expected, the wave suffering the largest change is the D2

Apart from S0 and D2, changes in other waves from UFD to CFD is
imperceptible



DIP vs NO DIP inelasticity scenarios

Dip          6.15
No dip     23.68

992MeV< e <1100MeV 

UFD

Dip                          1.02
No dip                     3.49

850MeV< e <1050MeV 

CFD
GKPY S0 wave d2Now we find large differences in 

No dip (forced) 2.06

Improvement possible?
No dip (enlarged errors) 1.66

But  becomes
the “Dip” solution

Other waves 
worse

and data
on phase

NOT described



Some relevant recent DISPERSIVE POLE Determinations of the f0(980)
(after QCHS-2010, also “according” to PDG)

GKPY equations = Roy like with one subtraction
García Martín, Kaminski, JRP, Yndurain PRD83,074004 (2011)

Garcia-Martin , Kaminski, JRP, Ruiz de Elvira, PRL107, 072001(2011)

Roy equations B. Moussallam, Eur. Phys. J. C71, 1814 (2011).MeV)24()996( 11
3

4
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6

+
−−± i

The dip solution favors somewhat higher masses slightly above KK threshold
and reconciles widths from production and scattering



Thus, PDG12 made a small correction for the f0(980) mass
& more conservative uncertainties

MeV20990MeV10980 ±=→±= MM



Other groups (Ananthanarayan, Gasser, Laetwyler, Caprini, Colangelo, Maussallam) 

have used Roy Eqs. alone to obtain 
SOLUTIONS for the S and P waves below 800 or 1000 MeV, 
using the rest as input.

Other approaches

For their most precise results, they use Chiral Perturbation Theory as INPUT
(or universal band)

The results shown so far are 
quite consistent with theirs



Our series of works: 2005-2011

Independent and simple fits 
to data in different channels.

“Unconstrained Data Fits=UDF”

Check Dispersion Relations 

Impose FDRs, Roy & GKPY Eqs
on data fits

“Constrained Data Fits CDF”
Describe data and are consistent with Dispersion relations

For resonance poles: Continuation to complex plane
USING THE DISPERSIVE INTEGRALS

R. Kaminski, JRP, F.J. Ynduráin Eur.Phys.J.A31:479-484,2007. PRD74:014001,2006
JRP ,F.J. Ynduráin. PRD71, 074016 (2005) , PRD69,114001 (2004), 
R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira, F.J. Ynduráin, Phys.Rev. D83 (2011) 074004, 
R. García Martín, R. Kaminski, JRP, J. Ruiz de Elvira ,Phys.Rev.Lett. 107 (2011) 072001



Some relevant Roy-like POLE Determinations
which the PDG took into account in their 2012 σ revision

GKPY equations = Roy like with one subtraction
R. Garcia-Martin , R. Kaminski, JRP, J. Ruiz de Elvira, PRL107, 072001(2011).

Includes latest NA48/2 constrained data fit .One subtraction allows use of data only

NO ChPT  input but good agreement with previous Roy Eqs.+ChPT results.

MeV)279()457( 11
7

14
15

+
−

+
− − i

Roy equations B. Moussallam, Eur. Phys. J. C71, 1814 (2011).

An S0 Wave solution up to KK threshold with input from previous Roy Eq. works

MeV)274()442( 6
5

5
8

+
−

+
− − i

Roy Eqs. I. Caprini, G. Colangelo, H. Leutwyler PRL97 011601 (2006)

An S0 Wave solution up to 800 MeV, uses ChPT input

(441−8+16)-i(272−12.5
+9 ) MeV



The f0(600) or “sigma”
in PDG 1996-2010

M=400-1200 MeV
Γ=500-1000 MeV

DRAMMATIC AND LONG AWAITED CHANGE  
ON “sigma” RESONANCE @ PDG2012!!

Becomes
f0(500) or “sigma”

in PDG 2012
M=400-550 MeV
Γ=400-700 MeV

To my view…
still too

conservative, 
but quite a good

improvement



Actually, in the PDG 2017:  “Note on scalars”

9. G. Colangelo, J. Gasser, and H. Leutwyler, NPB603, 125 (2001).
10. I. Caprini, G. Colangelo, and H. Leutwyler, PRL 96, 132001 (2006).
11. R. Garcia-Martin , R. Kaminski, JRP, J. Ruiz de Elvira, PRL107, 072001(2011)
12. B. Moussallam, Eur. Phys. J. C71, 1814 (2011)
13. P. Masjuan, J. Ruiz de Elvira, J.J. Sanz-Cillero, PRD90, 097901 (2014).
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(449−16+22)-i(275±12) MeV

Combining conservatively 
statistical and systematic 
uncertainties I estimate:

“One might just consider the most advanced dispersive analyses, Refs. 
[9–13]. They agree on a pole position close to (450−i 280) MeV.”



Unfortunately, to keep the confusion
the PDG still quotes a “Breit-Wigner mass” and width…

I have no words…

This was a long awaited improvement !!!! 

But someone else had:

Wovon man night sprechen kann, darüber muβ man schweigen

L. Wittgenstein, Tractatus Logico-philosophicus



NEW Global Parameterization

• The CFD were very simple, consistent and precise fits. Widely used 
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• However, 
o they were constructed piece-wise. 
o Only up to 1.4 GeV
o Only approximation to actual pole values from GKPY

JRP, A.Rodas, J. Ruiz de Elvira. arXiv:1907.13162. To appear in EJPC

• We have made a new global parameterization os S0 and P waves. 
o Not piece-wise 
o Consistent with CFD on the real axis
o Consistent with GKPY in the complex plane (Lehmann Ellipse)
o Consistent with GKPY up to 1.1 GeV and FDRs up to 1.4 GeV
o Consistent pole positions for f0(500), f0(980) and ρ(770)
o Fits data up to 2 GeV but 3 different solutions.
o Simple expressions easy to implement



NEW Global Parameterization JRP, A.Rodas, J. Ruiz de Elvira. arXiv:1907.13162. To appear in EJPC



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As πK checks: Small inconsistencies. 



Since interested in the resonance region, we use minimal number of subtractions

Defining the s↔u symmetric 
and anti-symmetric amplitudes
at t=0 

We need one subtraction for the symmetric amplitude

And none for the antisymmetric

Forward dispersion relations for K π scattering.

where Σ𝜋𝜋𝐾𝐾 = mπ
2+mK

2



(not a solution of dispersión relations,
but a constrained fit)

A.Rodas & JRP, PRD93,074025 (2016)

Forward Dispersion Relation
analysis of 

πK scattering DATA
up to 1.6 GeV

First observation:
Forward Dispersion relations

Not well satisfied by data
Particularly at high energies

So we use 
Forward Dispersion Relations 

as CONSTRAINTS on fits



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As πK checks: Small inconsistencies. 

• As constraints: 
πK consistent fits up to 1.6 GeV JRP, A.Rodas,Phys.Rev. D93 (2016)



How well Forward Dispersion Relations are satisfied by unconstrained fits

Define an averaged χ2 over these points, that we call d2

Every 22 MeV calculate the difference between both sides of the DR /uncertainty

d2 close to 1 means that the relation is well satisfied

d2>> 1 means the data set is inconsistent with the relation.

2 FDR’s Sum Rules 
threshold

Parameters of the 
unconstrained  data fits

To obtain CONSTRAINED FITS TO DATA (CFD) we minimize:

W roughly counts the number
of effective degrees of freedom 
(sometimes we add weight on certain energy regions)

This can be used to check DR



Consistency up to 1.6 GeV!!

Consistency up to 1.74 GeV!!



S-waves. The most interesting for the K0* resonances 

Largest changes from UFD to CFD

at higher energies

From Unconstrained (UFD) to Constrained Fits to data (CFD)



P-waves:  Small changes

SOLUTION from 
previous Roy-Steiner 
approach

From Unconstrained (UFD) to Constrained Fits to data (CFD)

Our fits
describe 
data well



D-waves:  Largest changes of all, but at very high energies

From Unconstrained (UFD) to Constrained Fits to data (CFD)

F-waves:  

Imperceptible changes

Regge parameterizations allowed to vary: Only πK-ρ residue changes by 1.4 deviations



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As πK checks: Small inconsistencies. 

• As constraints: 
πK consistent fits up to 1.6 GeV JRP, A.Rodas,Phys.Rev. D93 (2016)

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)



Strange resonance poles from CFD: Using Padé sequences JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017)

Almost model independent: Does not assume any particular functional form
(but local determination)

Based on previous works by P.Masjuan, J.J. Sanz Cillero, I. Caprini, J.Ruiz de ELvira



Strange resonance poles from CFD: Using Padé sequences JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017)

The method can be used for inelastic resonances too. Provides resonance parameters
WITHOUT ASSUMING SPECIFIC FUNCTIONAL FORM



Kappa pole analytic determinations from constrained fits

1) Extracted from our conformal CFD parameterization A.Rodas & JRP, PRD93,074025 (2016)

Fantastic analyticity properties, 
but not model independent

(680±15)-i(334±7.5) MeV

2) Using Padé Sequences… 
JRP, A.Rodas & J. Ruiz de Elvira. Eur. Phys. J. C (2017) 77:91 (670±18)-i(295± 28) MeV

Compare to PDG2017:                             
(682±29)-i(273±12) MeV

New PDG2018:                             
(630-730)-i(260-340) MeV

And name changed
K0

∗(700)
Still “Needs Confirmation”



The resonance is NO LONGER the κ nor the K0∗(800)

But Still “Needs 
Confirmation” !

Plenty of room 
for improvement
on parameters

Best analysis so far:
Roy-Steiner 

dispersion relations

Our
Pade sequences



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 

• As constraints: 
ππ→KK consistent fits up to 1.5 GeV

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas, Eur.Phys.J. C78 (2018)



ππ→KK HDR

JRP, A. Rodas PRD 2016 

gI
J =ππ → KK partial waves. We study (I,J)=(0,0),(1,1),(0,2)

fI
J = Kπ → Kπ partial waves. Taken from previous dispersive study

Δ(t) depend on higher waves
or on Kπ→Kπ.

Solve in descending J order
We have used models for higher waves, but give very small contributions

𝐺𝐺𝐽𝐽,𝐽𝐽𝐽
𝐼𝐼 (t,t’) =integral kernels, depend on a parameter

Lowest # of subtractions. Odd pw decouple from even pw. 
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Integrals from
2π threshold !



ππ→KK HDR

For unphysical region below KK threshold, we used Omnés function

This is the form of our HDR: Roy-Steiner+Omnés formalism

We can now check how well these HDR are satisfied
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I=1,J=1, UFD vs.CFD

UFD already good CFD even better

Requires almost imperceptible change from UFD to CFD

73

ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)



I=2,J=2, UFD vs. CFD

UFD room 
for improvement

Very small change from UFD to CFD. Only significant at threshold and high energies 

CFD better

But still tension at threshold

Other parameterizations (BW…), 
worse.
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ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)



I=0,J=0, UFD vs. CFD
We use I=0,J=2 CFD as input.

75

Remarkable improvement from UFD to CFD, except at threshold. 
Both data sets equally acceptable now.

Two possible sets of data
ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)



I=0,J=0, CFD

1-σ differences between
UFD and CFD phase

Some 2-σ level differences between UFDB and CFDB between 1.05 and 1.45 GeV
CFDC consistent within 1-σ band of UFDC

2-σ differences between
UFDB and CFDB phase
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ππ→KK Hiperbolic Dispersion Relations JRP, A.Rodas, Eur.Phys.J. C78 (2018)



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• From fixed-t DR: 
ππ→KK influence small.
κ/K0

∗(700) out of reach

• From Hyperbolic DR: 
ππ→KK influence important.

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 

• As constraints: 
ππ→KK consistent fits up to 1.5 GeV

• ALL DR TOGETHER as Constraints: 
πK consistent fits up to 1.1 GeV

• As πK Checks: Large inconsistencies. 

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas, Eur.Phys.J. C78 (2018)

JRP, A.Rodas, in progress. PRELIMINARY results shown here



πK Hiperbolic Dispersion Relations I=1/2, J=0

LARGE inconsistencies of unconstrained fits with the minimal number of subtractions 
(shown here)
Fairly consistent with one more subtraction for F-

Consistent within uncertainties
if we use the DR as constraints



πK Hiperbolic Dispersion Relations I=3/2, J=0  and I=1/2, J=0
SIZABLE inconsistencies of unconstrained fits with the minimal number 
of subtractions (shown here). Fairly consistent with one more subtraction for F-

Made consistent within uncertainties when we use the DR as constraints



πK CFD vs. UFD
Constrained parameterizations suffer minor changes but still describe 
πK data fairly well. Here we compare the unconstrained fits (UFD) versus the 
constrained ones (CFD)

The “unphysical” rho peak in ππ→KK grows by 10% from UFD to CFD



Our Dispersive/Analytic  Approach for πK and strange resonances
Simple Unconstrained Fits to πK partial-wave Data (UFD). 
Estimation of statistical and SYSTEMATIC errors

• Analytic methods to extract poles: reduced 
model dependence on strange resonances

Forward Dispersion Relations:
Left cut easy to rewrite
Relate amplitudes, not partial waves
Not direct access to pole 

• As constraints: 
πK consistent fits up to 1.6 GeV

Partial-wave πK Dispersion Relations
Need ππ→KK to rewrite left cut. Range optimized.

• From fixed-t DR: 
ππ→KK influence small.
κ/K0

∗(700) out of reach

• From Hyperbolic DR: 
ππ→KK influence important.

• As πK checks: Small inconsistencies. 

• As ππ→KK checks: Small inconsistencies. 

• As constraints: 
ππ→KK consistent fits up to 1.5 GeV

• ALL DR TOGETHER as Constraints: 
πK consistent fits up to 1.1 GeV

• As πK Checks: Large inconsistencies. 

• Rigorous κ/K0
∗(700) pole 

JRP, A.Rodas,Phys.Rev. D93 (2016)

JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

JRP, A.Rodas, Eur.Phys.J. C78 (2018)

JRP, A.Rodas, in progress. 
PRELIMINARY results

shown here



(658±13)-i(278.5±12) MeVRecall Roy-Steiner SOLUTION from Paris group
Decotes-Genon-Moussallam 2006

Dispersive pole analysis from constrained fit to data JRP, A. Rodas, in preparation

• Constrained FIT TO DATA (not solution but fit)
• Improved P-wave (consistent with data)
• Realistic ππ→KK uncertainties (none before)
• Improved Pomeron

• Constrained ππ→KK input with DR 
• FDR up to 1.6 GeV
• Fixed-t Roy-Steiner Eqs.
• Hyperbolic Roy Steiner Eqs.

both in real axis (not before) 
and complex plane

• Both one and no-subtraction
for F- HDR (only the subtracted one before)

Now we have:

No sub:  (662± 9)-i(288±31) MeV
1 sub: (661±13)-i(293±20) MeV



• The ππ → ππ, πK →πK and  ππ →KK data do not satisfy well basic dispersive 
constraints

• Using dispersion relations as constraints we provide, model independent, precise, 
consistent, simple and easy to implement data parameterizations. 

• NEW ππ → ππ analytic expressions up to 2 GeV, consistent with Dipersion theory up 
to 1.4 GeV

• Simple analytic methods of complex analysis can then reduce the model dependence 
in resonance parameter determinations. 

• This settled the f0(500)/σ parameters debate.

• We are implementing partial-wave dispersion relations whose applicability range 
reaches the K*0(700)/κ pole. Our preliminary results confirm previous studies. We 
believe this resonance should be considered “well-established”, completing the nonet 
of lightest scalars.

Summary
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