

Hadron structure observables

Alaa Dbeyssi

Helmholtz-Institut Mainz

EMMI Hadron Physics Seminar – GSI/Darmstadt 12.04.2017

QED: the strange theory of light and matter

Electromagnetic interaction via the exchange of virtual photons

QED is a time dependent perturbation theory

One photon interaction: $\alpha = 1/137$ Perurbative corrections: $\alpha^{n} = (1/137)^{n}$

QED converges rapidly: accurate predictions

 $d\sigma \sim \alpha^3$ +...

From QED to the theory of the strong interaction QCD

Quark model (Gell-Mann 1964) :

hadrons are made of quarks which are held together by the strong interaction

Hadronic scale ~ 1/fm (=1/139 MeV⁻¹) ~ Λ_{OCD} is non-perturbative

Studying the nucleon structure is an investigation of the non perturbative QCD

Electromagnetic structure of hadrons

QED interactions to probe the non perturbative **QCD**

- Connect quarks and gluons to hadrons via non-perturbative but **universal distribution functions** (QCD factorization)
- Provide unified view of the nucleon structure

Elastic Electron Proton Scattering- FFs - transverse spatial distributions

ep→ep

Deep Virtual Compton Scattering- Wide Angle Compton Scattering- GPDs – 1D momentum – 2D space distributions

Semi Inclusive Deep Inelastic Scattering- TMDs -3D momentum distributions + Spin structure and many other electromagnetic processes

Outline

- Electromagnetic form factors of the proton
 - Space-like region
 - Time-like region
- Parton Distribution functions (PDF) in SIDIS and Drell-Yan
- Generalized Parton Distributions (GPD) and Generalized Distribution Amplitudes (GDA)

In connection to the opportunities offered by the future **antiproton beams** of FAIR

Electron-Proton Elastic Scattering

(1911) Rutherford scattering cross section

- Non relativistic electron (E_k << m_e)
- No recoil of the proton (neglected)
- Point-like proton

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Rutherford}} = \frac{\alpha^2}{16E_K^2\sin^4\theta/2}$$

(1929) – Mott scattering cross section

- Relativistic electron (E_k >> m_e)
- Electron is carrying a spin
- No recoil of the proton (neglected)
- Point-like proton

Interaction between the electric charges of the particles matters.

Electron-Proton Elastic Scattering: the form factor

The resulting cross section is the cross section for scattering from a point source multiplied by the **form factor**

Proton electromagnetic form factor

• In the Breit frame (q=(0,q)) and in non relativistic approach, Sachs form factors are the Fourier transforms of charge and magnetic spatial distributions of the nucleon

Rosenbluth separation method

Unpolarized elastic ep scattering (Born approximation)

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_{Mott}}{d\Omega} \frac{1}{\varepsilon(1+\tau)} [\varepsilon G_E^2(Q^2) + \tau G_M^2(Q^2)], \tau = Q^2 / 4M_p^2$$
$$\varepsilon = [1 + 2(1+\tau)\tan^2(\theta_e/2)]^{-1}$$

$$\sigma_{red} = \frac{d\sigma}{d\sigma_{Mott}} \varepsilon(1+\tau) = \varepsilon G_E^2(Q^2) + \tau G_M^2(Q^2)$$

Rosenbluth separation method

Unpolarized elastic ep scattering (Born approximation)

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_{Mott}}{d\Omega} \frac{1}{\varepsilon(1+\tau)} [\varepsilon G_E^2(Q^2) + \tau G_M^2(Q^2)], \tau = Q^2 / 4M_p^2$$
$$\varepsilon = [1 + 2(1+\tau)\tan^2(\theta_e / 2)]^{-1}$$

C. F. Perdrisat at al. Prog. Part. Nucl. Phys. 59 (2007) 694

Polarization method (1967)

SOVIET PHYSICS - DOKLADY

VOL. 13, NO. 6

DECEMBER, 1968

PHYSICS

POLARIZATION PHENOMENA IN ELECTRON SCATTERING BY PROTONS IN THE HIGH-ENERGY REGION

Academician A. I. Akhiezer* and M. P. Rekalo

Physicotechnical Institute, Academy of Sciences of the Ukrainian SSR Translated from Doklady Akademii Nauk SSSR, Vol. 180, No. 5, pp. 1081-1083, June, 1968 Original article submitted February 26, 1967

The polarization induces a term in the cross section proportional to G_EG_M Polarized beam and target or polarized beam and recoil proton polarization

GEp Collaboration at JLab

$$R = \frac{G_E}{G_M} = -\frac{P_t}{P_\ell} \frac{\epsilon_1 + \epsilon_2}{2M} \tan(\vartheta/2),$$

JLab Polarization and Rosenbluth separation data

Contradiction between polarized and unpolarized measurements

Rosenbluth separation data

Prog. Part. Nucl. Phys. 59 (2007) 694

Alaa Dbeyssi

Data on the proton electromagnetic FFs (SL)

• Electric G_E and magnetic G_M proton form factors are analytical functions of the momentum transfer squared q^2

Electromagnetic Form Factors: the analyticity

At the threshold: $G_E(4M^2) = G_M(4M^2)$ (only s-wave) Point-like proton: $G_E(4M^2) = G_M(4M^2) = 1$

Unified frame for the description of FFs:

$$G(q^{2}) = \frac{1}{\pi} \left[\int_{4m_{\pi}^{2}}^{4m_{p}^{2}} \frac{\operatorname{Im} G(s) ds}{s - q^{2}} + \int_{4m_{p}^{2}}^{\infty} \frac{\operatorname{Im} G(s) ds}{s - q^{2}} \right]$$
$$\lim_{q^{2} \to -\infty} G_{E,M}^{SL}(q^{2}) = \lim_{q^{2} \to +\infty} G_{E,M}^{TL}(q^{2})$$

The measurement of the From Factors at large q² and in all the kinematical region: test of the analytical nature of the FFs

Time-Like proton electromagnetic FFs

- No individual determination of G_E and G_M
- Steep behaviour of the effective FF (G_{eff}) at threshold
- Structures appeared in BaBar data (PRD 87 (2013) 092005)?
 - Resonances (PRD 92 (2015) 034018)
 - Rescattering processes between few coherent sources (PRL 114 (2015) 232301)
- Form factor ratio (R): discrepancy between LEAR (NPB 411 (1994) 3) and BaBar data

Periodic structures in TL proton FFs

Andrea Bianconi, Egle Tomasi-Gustafsson

Phys. Rev. Lett. 114,232301 (2015), arXiv:1510.06338[nucl-th]

 $F_{osc}(p) \equiv A \exp(-Bp) \cos(Cp + D).$

<u>Optical potential analysis: double</u> <u>layer rescattering densities</u>:

- feeding at small r (by decay of higher mass states into pbar-p)
- depletion at large r (from annihilation into mesons)

Looking for the current and future experiments

- Separate measurement of $|G_{E}|$ and $|G_{M}|$
- Information on the relative phase G_E/G_M
- Steep behavior at threshold
- Babar: Structures? Resonances?
 - Confirmation by other experiments? for other baryons and mesons?
 - Are time reversal related reactions equivalent?
- Analyticity:
 - FF measurement over large energy range
 - Asymptotic behavior (TL proton FFs twice larger than in SL at the same Q²)
 - Access the unphysical region
- Difference between proton/neutron TL FFs

BESIII experiment at **BEPCII**

Alaa Dbeyssi

BESIII experiment at **BEPCII**

Alaa Dbeyssi

BESIII data samples

Proton FFs at BESIII

- Precise measurement of proton FFs in narrow q²-bins
- Expected (MC) statistical accuracies on proton $R=|G_E|/|G_M|=1$, between 9 % and 35%
- First time measurement of proton $|G_M|$ and $|G_E|$ separately

$$e^{+}e^{-} \rightarrow \overline{p}p, \overline{n}n, \overline{\Lambda}\Lambda, \overline{\Lambda}_{c-}\Lambda_{c+}, \Lambda\overline{\Sigma}^{0}, \overline{\Sigma}^{0}\Sigma^{0}, \overline{\Sigma}^{0}\Sigma^{0}, \overline{\Sigma}^{-}\Sigma^{+}, \overline{\Sigma}^{+}\Sigma^{-}, \overline{\Xi}^{0}\Xi^{0}, \overline{\Xi}^{+}\Xi^{-}, \overline{\Omega}^{+}\Omega^{-}$$

From Yadi Wang (PANDA CM 2016)

Facility for Antiproton and Ion Research - FAIR

A high quality and energy antiproton beam will be an excellent tool for a **complementary** study of the nucleon structure with lepton or photon experiments

Facility for Antiproton and Ion Research - FAIR

FAIR-HESR (start version)

Same proton vertex in both channels

Measurement of TL proton FFs at PANDA: Goals

- Measurements of the proton effective form factor in the TL region over a large kinematical region through: $\overline{p}p \rightarrow e^+e^ \overline{p}p \rightarrow \mu^+\mu^-$
- Individual measurement of $|G_E|$ and $|G_M|$ and their ratio •
- Possibility to access the relative phase of proton TL FFs
 - Polarization observables (Born approximation) give access to $G_E G_M^*$
 - Development of a transverse polarized proton target for PANDA in ٠ Mainz
- Measurement of proton FFs in the unphysical region: $\overline{p}p \rightarrow e^+e^-\pi^0$

- M.P. Rekalo. Sov. J. Nucl. Phys., 1:760, 1965

Current/future experiments: PANDA

> Feasibility studies (PANDARoot) for measuring $\overline{p}p \rightarrow e^+e^-$ at PANDA:

	q^2	Stat	Systematic		
	$[(\text{GeV}/c)^2]$		Bg	Lumi	Total
$\Delta G_E / G_E $	5.40	0.9%	0.3%	2.0%	2.2%
	8.21	4.1%	2.9%	2.0%	5.4%
	13.9	48%	3.1%	2.0%	48%
$\Delta G_M / G_M $	5.40	0.4%	2.8%	2.0%	3.5%
	8.21	1.2%	1.1%	2.0%	2.6%
	13.9	9.4%	1.0%	2.0%	9.7%
Δ R/R	5.40	1.3%	2.9%	n/a	3.3%
	8.21	5.3%	4.0%	n/a	6.6%
	13.9	56%	4.1%	n/a	57%

Eur. Phys. J. A 52, no. 10, 325 (2016)

Measurement of proton FFs with unprecedented accuracy in e⁺e⁻ final state

First time measurement of proton FFs with muons

Current/future experiments: BESII-PANDA

	BESIII	PANDA
s [(GeV/c) ²]	4 - 9.5	5 - 14
$R= G_E / G_M $	9 % - 35 %	1.4 % - 41 %

Proton form factors with a polarized proton target @ PANDA

Access the relative phase between the proton form factors:

- > Time-Like form factors are complex: $G_E = |G_E| e^{i\phi E}$ $G_M = |G_M| e^{i\phi M}$
- > Differential cross section of unpolarized signal reaction $\bar{p}p \rightarrow e^+e^-$

$$\frac{d\sigma}{d\cos\theta_{CM}} \propto Norm \times \left[(1 + \cos^2\theta_{CM}) \left| G_M \right|^2 + \frac{\left| G_E \right|^2}{\tau} (1 - \cos^2\theta_{CM}) \right]$$

with transverse polarized target:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_0 A_{1,y} \propto \sin 2\Theta \operatorname{Im}\left(G_M G_E^*\right)$$

Transverse Polarized target at PANDA

- To shield the target region from the longitudinal 2 T magnetic field induced by the PANDA solenoid one can use a superconducting tube
- The superconducting tube could induce a magnetic field opposite to the PANDA solenoid magnetic field

Target

Beam

BSCCO-2212

Alaa Dbeyssi

Proton structure functions

(Semi) Inclusive Deep Inelastic Scattering

- When we are scattering from individual point-like quarks within the target, we are in the regime of deep-inelastic scattering
 - Scattering at high q² and W²=(p+q)² (Bjorken limit).... α_s is small \rightarrow QCD factorization (perturbative and non perurbative parts)

$$\frac{d\sigma}{dx dQ^2} = \left(\frac{d\sigma}{dx dQ^2}\right)_{\text{point(eq}\to\text{eq})} \cdot \sum_{q=u,d,s,\bar{u},\bar{d},\bar{s}} e_q^2 q(x,Q^2)$$

PDFs: functions of the Bjorken x = fraction of nucleon momentum carried by struck quark

- In **SIDIS**, a hadron h is detected in coincidence with the scattered lepton:
- Scattering at high Q² and W² ... but create only one particle in final-state!

$$d\sigma^h \sim \sum_q e_q^2 q(x) \cdot \hat{\sigma} \cdot D^{q \to h}(z)$$

Transverse Momentum Dependence PDFs

Quark polarization

Nucleon polarization

Factorization and universality

PDFs are convoluted with the fragmentation functions

Transverse momentum dependence PDFs @ PANDA

Proton structure functions

Generalized Parton Distributions

Hard exclusive processes leads to a new class of parton distributions

Deep Virtual Compton Scattering

• At twist-2 approximation there are four chiral-even functions for each parton, related to QCD operators by Fourier transform: $H^{g,q}(x,\xi,t), E^{g,q}(x,\xi,t)$

 $ilde{H}^{g,q}(x,\xi,t), ilde{E}^{g,q}(x,\xi,t)$

• Contain PDFs probed in DIS experiments:

 $H^{q}(x,\xi=0,t=0) = q(x), -\overline{q}(-x)$

$$\tilde{H}^{q}(x,\xi=0,t=0) = \Delta q(x), \Delta \overline{q}(-x)$$

They are related to the elastic Form Factors:

$$\int_{-1}^{+1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t), \int_{-1}^{+1} dx E^{q}(x,\xi,t) = F_{2}^{q}(t)$$

• GPDs are 3D functions describing partonic structure of nucleons:

$$H^{q}(x,b_{\perp}) = \int \frac{d^{2}b_{\perp}}{(2\pi)^{2}} ee^{-ib_{\perp}\cdot b_{\perp}}H^{q}(x,\xi=0,t=-\Delta_{\perp}^{2})$$

Alaa Dbeyssi

Hard exclusive processes at PANDA

Correlated quark momentum and helicity distributions in transverse space - GPDs

Summary

- Hadron structure functions are universal frame to study various types of electromagnetic processes
- Measurements of the hadron structure functions in different channels and in different kinematical regions is required to test their universality/analyticity.
- The high quality antiproton beams of FAIR between 1.5 and 15 GeV/c allows the PANDA experimental to provide a **complementary** study of the nucleon structure with lepton or photon experiments

Thank you for your attention

Back-up

Proton FFs in the unphysical region

Feasibility studies were performed @ p=1.7 GeV/c with:

- q²=0.605 ±0.005, 2.0±0.125 (GeV/c²)², at each q²:
 - $10^{\circ} < \theta_{\pi 0} < 30^{\circ}, 80^{\circ} < \theta_{\pi 0} < 100^{\circ} \text{ and } 140^{\circ} < \theta_{\pi 0} < 160^{\circ}$ (Lab. System)

Alaa Dbeyssi