

Oct, 2016

HEAVY EXOTIC CONUNDRUMS

"hadrons are simple"

"hadrons are irreducible complexity"

theoretical issues

gluonics

hybrids glueballs strong decays

vacuum structure

chiral symmetry breaking confinement instantons/vortices/monopoles

short range interactions

gluon exchange pion exchange instantons coupled channels

long range interactions

pomeron exchange pion exchange gluonic multipoles coupled channels confinement emergence of nuclear physics $\pi_{1}(1400) \\ f_{0}(1500) \\ \Theta^{+}(1530) \\ \pi_{1}(1600) \\ \pi_{1}(1800) \\ \pi_{1}(2015) \\ \xi(2230) \\ H$

 $D_s(2317) \ D_{sJ}(2630) \ D_s(2700) \ D_{sJ}(2860)$

 B_c

states

 h_c η_c X(3872) $Z_{c}(3900)$ G(3900)X(3915)X(3940) χ_{c2} Y(4008) $Z_1(4050)$ Y(4140)X(4160)

 $Z_2(4250)$ Y(4260)/Y(4360)Y(4274)Y(4320)X(4350) $Z^{+}(4430)$ X(4630)Y(4660) η_b $\chi_{bJ}(3P)$ $Z_{h}^{+}(10610)$ $Z_{h}^{+}(10650)$

 $Y_b(10888)$

states

 h_c η_c' X(3872) $Z_{c}(3900)$ G(3900)X(3915)X(3940) χ_{c2} Y(4008) $Z_1(4050)$ Y(4140)X(4160)

 $Z_2(4250)$ Y(4260)/Y(4360) Y(4274) Y(4320) X(4350) $Z^+(4430)$ X(4630)Y(4660)

 $Z^{+}(4430)$ $Y(4260) \quad X(3872)$ $Z_2(4250)$ $Z_1(4050)$ $Y(4140) \begin{array}{c} Z_c(3900) \\ G(3900) \end{array} Y(4660) \end{array}$ Y(4008) X(4350)X(4630) $X(4274)^{X(3915)}$ $Y(4320)^{X(3915)}$ nterest X(4160) $X(3940)\eta'_{c}$ χ'_{c2} h_c robustness

discovery experiment

Y(4660)

X(4630)

 $Z^{+}(4430)$

X(4350)

 $Z_2(4250)$

production mode

Y(4260)

B. Aubert [BaBar], hep-ex/0506081

Y(4260)

 $e^+e^- \to \gamma_{\rm ISR} \pi \pi J/\psi$

 $\Gamma = 50 - 90$

Charmonium Vectors

Y(4260)

Y is is dip in R. Note the mess in the exclusive channels.

Y(4260)

Llanes-Estrada, hep-ph/0507035

- no available vector (4S=4415, 2D=4159)
- vector hybrid [at 4400]?

S-L Zhu, hep-ph/0507025 Close & Page, hep-ph/0507199

- the first vector S-wave open charm channel is at 4285 $(D\bar{D}'_1)$ or 4309 $(D\bar{D}_1)$: a cusp? a molecule?
- a very good candidate for a hybrid meson! [But note the expected suppressed coupling to ee]

JHC charmonia spectrum

JHC charmonia spectrum

J^{PC}	Mass (MeV)
0^{-+}	4195(13)
1^{-+}	4217(16)
$1^{}$	4285(14)
2^{-+}	4334(17)
1+-	4344(38) 4477(30)
0^{+-}	4386(9)
2^{+-}	4395(40) $4509(18)$
1^{++}	4399(14)
0^{++}	4472(30)
2^{++}	4492(21)
3^{+-}	4548(22)

part of an expected S-wave multiplet made with a 1+- chromomagnetic gluon

Four-quark States

 $Z^{+}(4430)$

 $B \to K \pi^+ \psi'$

.manifestly exotic .not confirmed by BaBar

 $M = 4443^{+24}_{-18}$ $\Gamma = 107^{+113}_{-71}$ $J^{PC} = ?$

Mokhtar, 0810.1073

 $Z^{+}(4430)$

seen and not seen at CDF

CDF Run II Preliminary

4.4

4.5

4.6

 $\psi(2S)\pi^{\pm}$ Mass [GeV/c²]

4.7

F. Rubbo, Torino thesis

LHCb

 $Z^{+}(4430)$

.confirmed by LHCb
$$J^P = 1^+$$

0.2 Re A^{Z⁻}

Z(4240) [?]

X(3872)

X(3872)

 $B^{\pm} \to K^{\pm} \pi^+ \pi^- J/\psi$

D. Acosta (CDF) hep-ex/0312021

B. Aubert (Babar) hep-ex/0402025

[∞] model the X(3872) as a $D\overline{D}^*$ bound state with $\omega J/\psi$ and $\rho J/\psi$ components.

* we need a microscopic model:

$$\mathcal{L} = \frac{1}{2} \int d^3x d^3y \,\psi^{\dagger} \psi V(x-y) \psi^{\dagger} \psi + \int d^4x \bar{\psi} \gamma^{\mu} \gamma_5 \tau^a \psi \partial_{\mu} \pi^a$$

constituent quark interaction

quark-pion interaction

Predictions:

- $J^{PC} = 1^{++}$
- only one bound state
- strong isospin mixing
- decay to pi pi pi J/psi
- $X \to \gamma J/\psi \gg X \to \gamma \psi(2S)$

decay widths

weak binding \rightarrow use free space decay widths to estimate dissociation decay modes

$D^{0*} D^{0*} D^{-*} D^{-*} D^{-*} P^{-*} \rho \rho \omega \rho \omega$

$B_E \ ({\rm MeV})$	$D^0 \bar{D}^0 \pi^0$	$D^0 ar{D}^0 \gamma$	$D^+D^-\pi^0$	$(D^+ \bar{D}^0 \pi^- + c.c)/\sqrt{2}$	$D^+D^-\gamma$	$\pi^+ \pi^- J/\psi$	$\pi^+\pi^-\gamma J/\psi$	$\pi^+\pi^-\pi^0 J/\psi$	$\pi^0 \gamma J/\psi$
0.7	67	38	5.1	4.7	0.2	1290	12.9	720	70
1.0	66	36	6.4	5.8	0.3	1215	12.1	820	80
2.0	57	32	9.5	8.6	0.4	975	9.8	1040	100
3.8	52	28	12.5	11.4	0.6	690	6.9	1190	115
6.1	46	26	15.0	13.6	0.7	450	4.5	1270	120
9.0	43	24	16.9	15.3	0.8	285	2.9	1280	125
12.7	38	22	18.5	16.7	0.9	180	1.8	1240	120

$$\frac{\Gamma(\hat{\chi} \to \pi \pi \pi J/\psi)}{\Gamma(\hat{\chi} \to \pi \pi J/\psi)} = 0.56$$

 $X \to 3\pi J/\psi$

Abe et al [Belle], hep-ex/0505037

[confirmed by BaBar]

=

EM Transitions

mode	$m_f \ ({\rm MeV})$	$q ({\rm MeV})$	$\Gamma[c\bar{c}] \ (\text{keV})$	$\Gamma[c\bar{c}] \ (\mathrm{keV})$	$\Gamma[c\bar{c}] \ (\mathrm{keV})$	$\Gamma[\hat{\chi}_{c1}] \; (\text{keV})$
			[B&G]	[A]	[B]	
$\gamma J/\psi$	3097	697	11	71	139	8
$\gamma\psi'(2^3S_1)$	3686	182	64	95	94	0.03
$\gamma\psi^{''}(1^3D_1)$	3770	101	3.7	6.5	6.4	0
$\gamma\psi_2(1^3D_2)$	3838	34	0.5	0.7	0.7	0

three problems

prompt production similar to psi(2S)
X to gamma psi(2S)/psi = 2.6(6)
X to D0D0*/pipiJ/psi = 9.2(2.9)

X-χ mixing

Table 1: $X - \chi_{c1}$ Mixing.

state	$E_B (\mathrm{MeV})$	$a \ (fm)$	Z_{00}	$a_{\chi} (\text{MeV})$	prob
χ_{c1}	0.1	14.4	93%	94	5%
	0.5	6.4	83%	120	10%
χ_{c1}'	0.1	14.4	93%	60	100%
	0.5	6.4	83%	80	> 100%

Other Molecules

no MM mixtures

state	J^{PC}	channels	mass (MeV)	E_B
$D^*\bar{D}^*$	0++	${}^{1}S_{0}, {}^{5}D_{0}$	4019	1.0
$B\bar{B}^*$	0^{-+}	${}^{3}P_{0}$	10543	61
$B\bar{B}^*$	1^{++}	${}^{3}S_{1}, {}^{3}D_{1}$	10561	43
$B^*\bar{B}^*$	0^{++}	${}^{1}S_{0}, {}^{5}D_{0}$	10579	71
$B^*\bar{B}^*$	0^{-+}	${}^{3}P_{0}$	10588	62
$B^*\bar{B}^*$	1^{+-}	${}^{3}S_{1}, {}^{3}D_{1}$	10606	44
$B^*\bar{B}^*$	2^{++}	${}^{1}D_{2},{}^{5}S_{2},{}^{5}D_{2},{}^{5}G_{2}$	10600	50

Zc and Zb

 $Z_{c}(3900)$

ee (4260) -> pi pi psi

Observation of Zc(3900) a

Shuangshi Feng [BESIII] H13

 $Z_{c}(3900)$

$$e^+e^- \to \pi D\bar{D}^* \qquad \sqrt{s} = 4.26$$

 $M = 3883.9 \pm 1.5 \pm 4.2$

 $\Gamma = 24.8 \pm 3.3 \pm 11.0$

Zc(3900)

Wolfgang Gradl, "Bound States in QCD", St Goar, Mar 24-27, 2015

New BESIII result with all three particles identified. Much smaller background.

 $Z_{c}(4025)$

 $e^+e^- \rightarrow \pi^+\pi^-h_c$ sums 13 different ee energy values "no significant Zc(3900) observed"

 $M = 4022.9 \pm 0.8 \pm 2.7$ $\Gamma = 7.9 \pm 2.7 \pm 2.6$

BESIII Phys. Rev. Lett. 111, 242001 (2013).

 $Z_{c}(4025)$

 $e^+e^- \to (D^*\bar{D}^*)^{\pm}\pi^{\mp}$

$M = 4026.3 \pm 2.6 \pm 3.7$ $\Gamma = 24.8 \pm 5.6 \pm 7.7$

BESIII Phys. Rev. Lett. 112, 132001 (2014)

MM(π), GeV/c²

MM(π), GeV/c²

MM(π), GeV/c²

Ideas:

From SPIRE HEP Database (21st, Apr): 1. Tetraquarks

- arXiv:1110.1333, 1303.6857
- arXiv:1304.0345, 1304.1301
- 2. Hadronic molecules
- arXiv:1303.6608, 1304.2882, 1304.1850
- 3. Four quark state (1 or 2)
- arXiv:1304.0380
- 4. Meson loop
- arXiv:1303.6355
- arXiv:1304.4458
- 5. ISPE model
- arXiv:1303.6842

6

Meson loop

Modelling the Zs

- It seems foolish to ignore that the Z_cs and Z_bs are just above related thresholds.
- Threshold enhancements are common in hadronic interactions

threshold enhancements

Figure 5.2: Comparison of the $\gamma\gamma \rightarrow \rho\rho$ measured cross sections. The reaction $\gamma\gamma \rightarrow \rho^0\rho^0$ is presented as squares and is the measurement by PLUTO [11] and the reaction $\gamma\gamma \rightarrow \rho^+\rho^-$ as full dots.

2.5

Wyy [GeV/c²]

3.5

1.5

0.5

threshold enhancements

[Belle] PRL100, 202001 (08)

threshold enhancements

Modelling the Zs - Cusps

Q: how does Y(5S) couple to $Y\pi\pi$?

$$\begin{split} \Upsilon(5S) &\to \text{ hidden bottom} = 3.8\% \\ \Upsilon(5S) &\to B^{(*)} \bar{B}^{(*)} = 57.3\% \\ \Upsilon(5S) &\to B^{(*)} \bar{B}^{(*)} \pi = 8.3\% \\ \Upsilon(5S) &\to \Upsilon(nS) \pi \pi < 7.8 \cdot 10^{-3} \end{split}$$

Loops Create Cusps

E.P. Wigner, Phys. Rev. 73 (1948) 1002

D. V. Bugg, Europhys. Lett. 96, 11002 (2011)

D. V. Bugg, Int. J. Mod. Phys. A 24, 394 (2009)

E.S. Swanson, arXiv:1409.3291

Modelling the Zs – Cusps

this is -BW and 80*loop both 'resoanance' locations at 3886 = 11 MeV above threshold

phase motion

Modelling the Zs – Cusps

track pole while doing this!!! need to couple pi psi to get a resonance

effect of the bubble sum

E.S. Swanson, arXiv:1504.07952

Modelling the Zs - Cusps

Attempt a "microscopic" cusp model [separable nonrelativistic model; solve exactly] [iterate all bubbles]

 $g_{DD^*} \cdot \exp(-\lambda(s_{\pi Y})/\beta_{\pi Y}^2) \exp(-\lambda(s_{DD^*})/\beta_{DD^*}^2)$

More Detailed Modelling

Model the vertices so that more processes can be described.

Now we need to build the 'self energy'

Modelling the Zs - Cusps

fix couplings and scales with Y(3S) – relatively little pipi dynamics. Get Y(2S) with same couplings! Y(1S) requires 70% smaller coupling BB*:piY(1S)

 $\Upsilon(5S) \to \Upsilon(nS)\pi\pi$

Zb(10610), Zb(10650)

 $\beta_{\alpha i} = 0.7 \text{ GeV}$

$$g_{\Upsilon(nS)BB^*}^2 = 0.9 \cdot g_{\Upsilon(nS)B^*B^*}^2$$

Adachi et al. [Belle Collaboration], arXiv:1105.4583 [hep-ex]; Garmash et al. [Belle Collaboration], arXiv:1403.0992 [hep-ex].

Modelling the Zs — Cusps $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi\pi$

Zb(10610), Zb(10650)

same couplings used!

Adachi et al. [Belle Collaboration], arXiv:1105.4583 [hep-ex]; Garmash et al. [Belle Collaboration], arXiv:1403.0992 [hep-ex].

Modelling the Zs - Cusps

fix couplings and scales with Y(3S) – relatively little pipi dynamics. Get Y(2S) with same couplings! Y(1S) requires 70% smaller coupling BB*:piY(1S)

 $\Upsilon(5S) \to \Upsilon(nS)\pi\pi$

Zb(10610), Zb(10650)

Adachi et al. [Belle Collaboration], arXiv:1105.4583 [hep-ex]; Garmash et al. [Belle Collaboration], arXiv:1403.0992 [hep-ex

Modelling the Zs – Cusps $\Upsilon(5S) \rightarrow h_b(nP)\pi\pi$ Zb(10610), Zb(10650)

Modelling the Zs – Cusps $\Upsilon(5S) \rightarrow h_b(nP)\pi\pi$ Zb(10610), Zb(10650)

solid line: same as above

dashed line:

 $\begin{array}{l} \beta_{BB^*} = 0.7 \ {\rm GeV}, \ \beta_{B^*B^*} = 0.4 \ {\rm GeV} \\ g_{BB^*}^2 = 0.5 \ g_{B^*B^*}^2 \end{array}$

no evidence for π D* dynamics, background, or bubble

Modelling the Zs – Cusps

fit the pi Y: DD* vertex

note that only pi and D are reconstructed, D* is inferred => lots of room for incoherent background

Pink curve: wider beta, compensate with attractive bubble => ruins shape

Modelling the Zs – Cusps

 $e^+e^- \to Y(4260) \to \pi\pi J/\psi$

Modelling the Zs - Cusps

M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 111, 242001 (2013).

Modelling the Zs – Issues with Cusps

other cusp channels?

•
$$\Upsilon(5S) \rightarrow K\bar{K}\Upsilon(nS)$$
 $B\bar{B}_s^* + B^*\bar{B}_s$ 10695
 $B^*\bar{B}_s^*$ 10745

•
$$e^+e^- \to K\bar{K}J/\psi$$
 $D\bar{D}_s^* + D^*\bar{D}_s$ 3980
 $D^*\bar{D}_s^*$ 4120

Modelling the Zs - Issues with Current Current Science and the Science Science and the Science Science and the Science Science and the Scie

COMPASS

$$\exp(-\lambda(s_{\gamma N}, m_{\psi}^2, m_{\pi}^2)/(4s_{\gamma N}\beta^2) \approx \\\exp(-(s_{\gamma N} - m_{\psi}^2)^2/(4s_{\gamma N}\beta^2) \approx \\\exp(-88)$$

C. Adolph et al. [COMPASS] arXiv:1407.6186v1

LHCb 4X

$B \to K J/\psi \phi$

Year	Experiment	$B\to J\!/\!\psi\phi K$	X(4274 - 4351) peaks(s)			
	luminosity	yield	Mass [MeV]	Width $[MeV]$	Sign.	Fraction [%]
2011	$CDF \ 6.0 \ fb^{-1} \ [28]$	115 ± 12	$4274.4^{+8.4}_{-6.7}{\pm}1.9$	$32.3^{+21.9}_{-15.3}\pm7.6$	3.1σ	
2011	LHCb 0.37 fb^{-1} [21]	346 ± 20	4274.4 fixed	32.3 fixed		< 8 @ 90% CL
2013	CMS 5.2 fb^{-1} [25]	2480 ± 160	$4313.8 {\pm} 5.3 {\pm} 7.3$	$38 \ ^{+30}_{-15} \ \pm 16$		
2013	D0 10.4 fb ^{-1} [26]	215 ± 37	$4328.5 {\pm} 12.0$	30 fixed		
2014	BaBar [24]	189 ± 14	4274.4 fixed	32.3 fixed	1.2σ	< 18.1 @ 90%CL
2010	Belle [31]	$\gamma\gamma\to J\!/\!\psi\phi$	$4350.6^{+4.6}_{-5.1}{\pm}0.7$	$13^{+18}_{-9}{\pm}4$	3.2σ	
arXiv:1606.07895v1

$B \to K J/\psi \phi$

State	Mass (unct.) [MeV]	Width (unct.) [MeV]	J^{PC}
Y(4140)	4165.5(5,3)	83(21,16)	1^{++}
Y(4274)	4273.3(8,11)	56(11,10)	1^{++}
X(4500)	4506(11,13)	92(21,21)	0^{++}
X(4700)	4704(10,19)	120(31, 35)	0++

red: LHCb fit black GI blue: PDG green: unconfirmed

LHCb fit the lowest state with my cusp model:

The value of β_0 obtained by the fit to the data is 297 ± 20 MeV, in agreement with 300 MeV used by Swanson [44]. A fit with this parameterization (3 free parameters: β_0 plus the S-wave complex helicity coupling) has a better likelihood than the BW fit by 1.6σ for the default model (8 parameters in the X(4140) BW parameterization), and better by 3σ when only S-wave couplings are allowed (4 parameters), providing an indication that the X(4140) structure may not be a bound state that can be described by the BW formula.

X(5568)

Seen by D0 in $X(5568) \rightarrow B_s^0 \pi^{\pm}$

V. M. Abazov et al. (D0 Collaboration) Phys. Rev. Lett. 117,022003

$m = 5567.8 \pm 2.9^{+0.9}_{-1.9}$

 $\Gamma = 21.9 \pm 6.4 \, {}^{+5.0}_{-2.5}$

 $su\overline{b}\overline{d}$ (the first example of such an open flavour exotic!)

they may have missed a gamma, in which case it goes to Bs*pi, and has a higher mass

 $X(5568 + 48.6) \to B_{s}^{*} \gamma \pi^{\pm}$

C.-J. Xiao, D.-Y. Chen, arXiv:1603.00228.

BK molecule (mass = 5777)

E.E. Kolomeitsev, M.F.M. Lutz, Phys. Lett. B 582 (2004) 39.

exotic flavour in a unitarised chiral model. but mass 180 MeV greater than observed T.J. Burns and E.S. Swanson, Phys. Lett. B760, 627 (2016).

check threshold enhancement...

check cusps...

only nearby threshold is $B_s^*\pi$ at 5555 MeV

Can fit data BUT

- require P-wave rescattering
- hadronic bubble scale = 50 MeV (typical is 300)
- weird process ($BK \leftrightarrow B_s \pi$ is more natural)
- expect a neutral analogue state

check molecules...

Natural system is $BK \leftrightarrow B_s \pi$

arrow is location of resonance req'd. A good old fashioned Gamov-Gurney-Condon tunneling resonance.

Find attraction, but not enough

tetraquark models...

S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 93 (2016) 074024.
W. Chen, H.-X. Chen, X. Liu, T.G. Steele, S.-L. Zhu, arXiv:1602.08916.
Z.-G. Wang, arXiv:1602.08711.
C.M. Zanetti, M. Nielsen, K.P. Khemchandani, Phys. Rev. D 93 (2016) 096011.
W. Wang, R. Zhu, arXiv:1602.08806.
Y.-R. Liu, X. Liu, S.-L. Zhu, Phys. Rev. D 93 (2016) 074023.
F. Stancu, arXiv:1603.03322.

L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Phys. Rev. D 89 (2014) 114010.

R.F. Lebed, A.D. Polosa, Phys. Rev. D 93 (2016) 094024. A. Ali, L. Maiani, A.D. Polosa, V. Riquer, arXiv:1604.01731 [hep-ph].

Tetraquark scenarios

The bsu baryons Ξ_b and Ξ_b^* have masses of 5794 MeV and 5945 MeV.

$$H = \sum_{k} m_k + \sum_{ij} \alpha_{ij} S_i \cdot S_j$$

Estimate constituent masses with spin averaged B/B* and K/K* masses.

Get
$$\sum_{k} m_k = 6146 \text{ MeV}$$

So need abnormally light quarks or large spin splittings.

Tetraquark scenarios

Ambiguity: double spectrum by including the other colour combination?

$$(qq)_{\bar{3}} (\bar{b}\bar{s})_3 \qquad (qq)_6 (\bar{b}\bar{s})_{\bar{6}}$$

Spin interactions between quarks or diquarks?

New Pentaquarks

 $P_c(4450)$ $P_c(4380)$

 $\Lambda_h^0 o J/\psi K^- p$

 $P_c(4450)$ $\Gamma = 39 \pm 5 \pm 19 \text{ MeV}$ $P_c(4380)$ $\Gamma = 205 \pm 18 \pm 86 \text{ MeV}$

LHCb 1507.03414v2

 $P_c(4450)$ $P_c(4380)$

blue = 4450 purple = 4380

 $P_{c}(4450)$ $P_{c}(4380)$

T.J. Burns & E.S. Swanson, in progress

		<i>P_c</i> (4380)+	<i>P_c</i> (4450) ⁺
Mass Width		$4380 \pm 8 \pm 29$ $205 \pm 18 \pm 86$	$4449.8 \pm 1.7 \pm 2.5$ $35 \pm 5 \pm 19$
Assignment 1 Assignment 2 Assignment 3		$3/2^{-}$ $3/2^{+}$ $5/2^{+}$	$5/2^+$ $5/2^-$ $3/2^-$ $2/2^+$
Assignment 4 $\Sigma_c^{*+} \overline{D}^0$ $\Sigma_c^+ \overline{D}^{*0}$ $\Lambda_c^+ (1P) \overline{D}^0$	$(udc)(u\overline{c})$ $(udc)(u\overline{c})$ $(udc)(u\overline{c})$	5/2 4382.3 ± 2.4	3/2 4459.9 ± 0.5 4457.09 ± 0.35
$\chi_{c1} p$	$(udu)(c\bar{c})$		4448.93 ± 0.07

Production Mechanisms (tree)

 \overline{C} b

Production Mechanisms (loop)

A huge number of possible cusp thresholds!

And still need to account for the final state interactions!

Q: can the final state interactions select/enhance an intermediate state?

For point-like constituents:

$$C(r) = \frac{g^2 m^3}{12\pi f_{\pi}^2} \left(\frac{e^{-mr}}{mr} - \frac{4\pi}{m^3} \delta^3(\vec{r}) \right)$$

For extended hadrons, use dipole form factors with cutoff Λ . The limit $\Lambda \to \infty$ recovers the point-like case.

diagonal only

Potential without the delta term.

(Deuteron binding requires $\Lambda = 0.8$ GeV.)

	$\Lambda_c \bar{D}$	$\Lambda_c \bar{D}^*$	Σ _c D̄	$\Sigma_c^* \bar{D}$	$\Sigma_c \bar{D}^*$	$\Sigma_c^* \bar{D}^*$
$\frac{1}{2}\left(\frac{1}{2}^{-}\right)$	\checkmark	\checkmark	\checkmark		+16/3	+20/3
$\frac{1}{2}\left(\frac{3}{2}^{-}\right)$		\checkmark		\checkmark	-8/3	+8/3
$\frac{1}{2}\left(\frac{5}{2}^{-}\right)$						—4
$\frac{3}{2}\left(\frac{1}{2}^{-}\right)$			\checkmark		-8/3	-10/3
$\frac{3}{2}\left(\frac{3}{2}^{-}\right)$				\checkmark	+4/3	-4/3
$\frac{3}{2}\left(\frac{5}{2}^{-}\right)$						+2

$$\Sigma_c^* \bar{D}^* \ 1/2(5/2^-) \qquad \qquad \Xi_c^* \bar{D}^* \ 0(5/2^-)$$

$$\Sigma_c^{*+} \bar{D}^{*0} = 4524.4 \pm 2.4 \qquad \qquad \Xi_c^{*0} \bar{D}^{*0} = 4652.9 \pm 0$$

$$\Sigma_c^{*+}D^{*0} = 4524.4 \pm 2.4$$

 $\Sigma_c^{*+}D^{*-} = 4528.2 \pm 0.7$
 $\Xi_c^{*0}D^{*0} = 4652.9 \pm 0.6$
 $\Xi_c^{*+}D^{*-} = 4656.2 \pm 0.7$

Mixed isopsin: Mixed isopsin: $|P\rangle = \cos \phi |\frac{1}{2}, \frac{1}{2}\rangle + \sin \phi |\frac{3}{2}, \frac{1}{2}\rangle \quad |P\rangle = \cos \phi |0, 0\rangle + \sin \phi |1, 0\rangle$

Decays: $\rightarrow J/\psi p$: D-wave, spin flip Reason for absence at LHCb?

Decays: $\rightarrow J/\psi \Lambda$: D-wave, spin flip e.g. $\Lambda_b^0 \rightarrow J/\psi \Lambda \eta$, $J/\psi \Lambda \phi$

 \implies I = 3/2 decay enhanced. \implies I = 1 decay enhanced.

 $\rightarrow J/\psi\Delta$: S-wave, spin cons. $\rightarrow J/\psi\Sigma^*$: S-wave, spin cons.

Observations

Why do ee and b decay production modes differ?

goes in PV mode in P-wave (pi Zc)_P

$$Y(4260) \to \pi^+ \pi^- J/\psi$$

$$B_0 \to \pi^+ \pi^- J/\psi$$

R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 90, 012003 (2014).

Why does "radial filtering" happen?

$$e^+e^- \to Y(4360) \to \pi^+\pi^-\psi(2S)$$

 $Y(4660)$
 $e^+e^- \to Y(4260) \to \pi^+\pi^- J/\psi$

 $e^{+}e^{-} \to \pi^{\pm}Z_{c}(4055); \ Z_{c}(4055) \to \pi^{\mp}\psi(2S)$ $B \to KZ_{c}(4475); Z_{c}(4475) \to \pi^{\pm}\psi(2S)$ $Z_{c}(4240)$ $M \to KZ_{c}(4200); Z_{c}(4200) \to \pi^{\pm}J/\psi$

Fig. 1. The fit to the *R* values for the high mass charmonia structure. The dots with error bars are the updated *R* values. The solid curve shows the best fit, FIG. 2 (color online). (a) The $J/\psi \pi^+ \pi^-$ mass spectrum of two ampfrisher was spectrum of two ampfrisher walks of the fit are shown in Fig. 2 (a) from BESIII and CLEO-c (dots with error bars are the updated *R* values. The solid curve shows the best fit, FIG. 2 (color online). (a) The $J/\psi \pi^+ \pi^-$ mass spectrum of two ampfrisher walks of the fit are shown in Fig. 2 (a) from BESIII and CLEO-c (dots with error bars are the updated *R* values. The solid curves show the contributions from each resonance R_{BW} , the 3.74 GeV/ c^2 to 5.5 GeV/ c^2 ; the points represent the data and present the data and present the summation of the four resonance R_{BW} , the 3.74 GeV/ c^2 to 5.5 GeV/ c^2 ; the points represent the edita and present the data and present the summation of the four resonance R_{BW} , the 3.74 GeV/ c^2 to 5.5 GeV/ c^2 ; the points represent the edita and present the data and present the summation of the four resonance R_{BW} , the 3.74 GeV/ c^2 to 5.5 GeV/ c^2 ; the points represent the edita and present the data and present the summation of the four resonance R_{BW} , the 3.74 GeV/ c^2 to 5.5 GeV/ c^2 ; the points represent the data and present the data and present the summation of the four resonance R_{BW} , the 3.74 GeV/ c^2 to 5.5 GeV/ c^2 ; the points represent the data and present the data and present the summation of the four resonance R_{BW} the summation of the four resonance R_{BW} the summation of the four resonance R_{BW} the solid curves show the best fits, and present the present the present the resonance R_{BW} the solid curves show the best fits, and present the present

Conclusions

- $\Im X(3872)$: likely a $c\bar{c} \bar{D}D^*$ mixture (not a cusp!)
- Y(4260): our best candidate for a hybrid; expect many more!
- Sec(4475): 4q exotic? Much to be understood with this (and related?) states.
- $\subseteq X(5568)$: likely dead.
- Pc(4450) +Pc(4380): actual pentaquarks? Again, much remains to be understood.
- Why do ee and B decays differ?Why are states associated with radial excitations?

Conclusions

- Itere are a lot of new states, not all of them are 'real'!
- cusp effects can be important and should be accounted for when modelling
- \bigcirc it appears likely (?) that the Z_b and Z_c states are kinematical
- cusps appear above threshold with fixed properties such as widths and phases
- channel-dependent widths, masses, and production characteristics are a clue!
- nonrelativistic separable model fits the data well and is internally consistent.

Conclusions

 \odot search for new classes of exotics: hexaquarks, double heavies, eg $cc\bar{u}\bar{d}$; exotic J^{PC}

search for new decay modes of exotics
clarify conventional cc̄ in 3.8-4.0 GeV range. Zc(3930) = ?

. χ_{c2}(2P) : should be able to observe a DD* decay mode
understand the e⁺e⁻ charm cross sections better
compare pp̄ to e⁺e⁻production (via PANDA);
photoproduction at COMPASS
full amplitude analysis a la LHCb, more sophisticated models
than isobar?

+ ÆRIC MEC HEHT GEWYRCAN

