Searching for Exotic Hadrons at Gue

Sean Dobbs Florida State U.

GSI, Darmstadt, Germany February 13, 2019

Introduction

- Quantum Chromodynamics (QCD)
 - Degrees of freedom: quarks and gluons
 - Rich spectrum of bound states predicted
 - Outstanding questions remain e.g., What is the role of gluonic degrees of freedom?
- New understanding gained by studying spectrum of bound QCD states
 - Recent progress in understanding hadron spectrum driven by large, high-quality data sets
 - New theoretical tools essential for accurately interpreting this data

- Idea: study QCD through spectrum of bound states
 - Static properties of known hadrons well described by firstprincipals calculations
 - Modern experiments provide unprecedented data sets to push boundaries of our knowledge
 - Open questions:
 - What is the origin of confinement?
 - Which color-singlet states exist in nature?

- Idea: study QCD through spectrum of bound states
 - Static properties of known hadrons well described by firstprincipals calculations
 - Modern experiments provide unprecedented data sets to push boundaries of our knowledge
 - Open questions:
 - What is the origin of confinement?
 - Which color-singlet states exist in nature?

Events / 0.01 GeV/c²

100

80

60

40

Events / 0.01 GeV/c²

- Idea: study QCD through spectrum of bound states
 - Static properties of known hadrons well described by firstprincipals calculations
 - Modern experiments provide unprecedented data sets to push boundaries of our knowledge
 - Open questions:
 - What is the origin of confinement?
 - Which color-singlet states exist in nature?

- Idea: study QCD through spectrum of bound states
 - Static properties of known hadrons well described by firstprincipals calculations
 - Modern experiments provide unprecedented data sets to push boundaries of our knowledge
- Open questions:
- What is the origin of confinement?
- Which color-singlet states exist in nature?
- Do gluonic degrees of freedom manifest themselves in the bound states that we observe?

- Idea: study QCD through spectrum of bound states
 - Static properties of known hadrons well described by firstprincipals calculations
 - Modern experiments provide unprecedented data sets to push boundaries of our knowledge
- Open questions:
- · What is the ori
- Which color-sin nature?
- Do gluonic degrees of freedom manifest themselves in the bound states that we observe?

hybrid meson

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

glueball

Meson Quantum Numbers

Mesons are arranged in groups of 9 ("nonets") with same J^{PC}

gluonic field excitation \rightarrow "constituent gluon"

J=L+S P=(-1)^{L+1} C=(-1)^{L+S}

$$q$$
 \overline{q}
 q \overline{q}
"Normal" Meson "Hybrid" Meson

Allowed J^{PC}: 0⁻⁺, 0⁺⁺, 1⁻⁻, 1⁺⁻, 2⁺⁺, 2⁻⁺,... Hybrid J^{PC}: 0⁻⁺, 0⁺⁻, 1⁻⁻, 1⁻⁺, Forbidden J^{PC}: **0**⁻⁻, **0**⁺⁻, **1**⁻⁺, **2**⁺⁻, ...

2-+, 2+-,

Hybrid–Meson mass splitting ~ 1.0 – 1.5 GeV

HadSpec: Dudek, Edwards, Guo, Thomas, PRD 88, 094505 (2013)

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

Evidence for exotic light-quark mesons

- Many searches, strongest evidence for π_1 in $\eta'\pi$ and $\rho\pi\,P\text{-waves}$
- Resonance character not conclusively established

Evidence for exotic light-quark mesons

- Coupled channel analysis in progress for P-waves and D-waves
- High precision data & theoretical advances required to describe data

A. Rodas et al. (JPAC) [Phys. Rev. Lett. 122, 042002 (2019)]

PAC

Meson Photoproduction

- Photon couples to exchanged QN via VMD, generates mesons with wide variety of J^{PC}
 - All expected hybrids can be produced!

Meson Photoproduction

- Photon couples to exchanged QN via VMD, generates mesons with wide variety of J^{PC}
 - All expected hybrids can be produced
- Variety of hybrid decays expected:
 - $\pi_1 \rightarrow \rho \pi, \pi b_1, \pi f_1$
 - $\eta_1 \rightarrow \eta f_2, \pi a_2, \eta f_1$
 - Little existing photoproduction data. Neutral final states at these energies are mostly unexplored
- Photon polarization provides constraints on production processes

Meson Photoproduction & Amplitude Analysis

- Multiple states are produced which decay to the same set of particles and interfere
 - Need to study production and decay mechanisms
- Must understand photon beam characteristics and have detailed detector model
- Improved theoretical models for amplitudes also needed, work closely with JPAC and others

The GlueX Experiment in Hall D @ JLab

- The GlueX experiment is located in Hall D, newly constructed as part of the Jefferson Lab 12 GeV upgrade.
 - Large acceptance solenoidal spectrometer
 - Linearly polarized photon beam peaking at 9 GeV
 - Detects all decay products from full hadronic photoproduction rate
- 100+ Collaborators from 26 institutions

Hall D

The GlueX Experiment

- 2016: 10 pb⁻¹ (~80 hours of physics-quality commissioning data)
 - (used for most results shown here)
 - **2018:** ~150 pb⁻¹ GlueX Phase-I complete!

2017: 45 pb⁻¹

ullet

The GlueX Experiment: Photon Beam

- Photon beam generated via coherent
 bremsstrahlung off thin diamond radiator
- Photon energies tagged by scattered electrons
 - Energy measurement precision < 25 MeV
- Photon linear polarization $P_{\gamma} \sim 40\%$ in peak
- Intensity of ~1–5 \times 10⁷ g/s in peak

 Detailed understanding of light-quark meson spectrum requires amplitude analysis.

Collect Data

 Detailed understanding of light-quark meson spectrum requires amplitude analysis.

 Detailed understanding of light-quark meson spectrum requires amplitude analysis.

 Detailed understanding of light-quark meson spectrum requires amplitude analysis.

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

 Detailed understanding of light-quark meson spectrum requires amplitude analysis.

 Detailed understanding of light-quark meson spectrum requires amplitude analysis.

- Understanding production mechanisms necessary to determine J^{PC} of mesons in amplitude analyses, look at simplest reactions first
- Beam asymmetry Σ yields information on production mechanisms
- Combining data taken with different beam polarization cancels most acceptance effects

JPAC: Mathieu et al., PRD 92, 074013

- Understanding production mechanisms necessary to determine J^{PC} of mesons in amplitude analyses, look at simplest reactions first
- Beam asymmetry Σ yields information on production mechanisms
- Combining data taken with different beam polarization cancels most acceptance effects

- Understanding production mechanisms necessary to determine J^{PC} of mesons in amplitude analyses, look at simplest reactions first
- Beam asymmetry Σ yields information on production mechanisms
- Combining data taken with different beam polarization cancels most acceptance effects

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

- Understanding production mechanisms necessary to determine J^{PC} of mesons in amplitude analyses, look at simplest reactions first
- Beam asymmetry Σ yields information on production mechanisms
- Combining data taken with different beam polarization cancels most acceptance effects

- First step towards study of photoproduction amplitudes made using 2016 data
- Σ ≈ 1 indicates vector exchange dominates at this energy
- First η measurement at this energy
- Constrains background to baryon resonance production at lower energies [e.g. arXiv:1708.07779]

First JLab 12 GeV publication: Phys.Rev.C 95, 042201 (2017)

- Initial studies of η and η' beam asymmetries using 2017 data and additional decay modes
 - Expect similar mechanism for exotics
- Production is consistent with vector exchange dominance
 - Full GlueX-I data will provide a factor 5 more events
- Program of production amplitude studies is well underway

Beam Asymmetries: $\chi p \rightarrow \pi^- \Delta^{++}$

 $\pi^- \Delta^{++}$

0.8

1.2

0.4

Phys. Rev. D 20, 1553 (1979)

 $\sqrt{-t}$ (GeV/c)

0

0.4

-0.8

0

- Charged pseudoscalar beam asymmetry has more complicated t-dependance
- Preliminary results use order of magnitude more data than previous measurements

B.G Yu (Korea Aerospace U.), arxiv:1611.09629v5 (16 GeV)

J. Nys (JPAC), arxiv: 1710.09394v1 (8.5 GeV) Asymmetry Σ \pm 7% norm. uncertainty **SLUE** Preliminary $\gamma p \rightarrow \pi^- \Delta^{++}$ 0.5 (~8.5 GeV) Asymmetry ∑ Natural exchange -0.5 favored (e.g. ρ , a_2) Unnatural exchange favored (e.g. π) 0.2 0.4 0.6 0.8 -1-t (GeV²)

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

HadSpec: Dudek, Edwards, Guo, Thomas, PRD 88, 094505 (2013)

Spectroscopy Prospects: $\gamma p \rightarrow p + \pi^+ \pi^-$

- Take fresh look at π⁺ π⁻ photoproduction
 - Using two-orders of magnitude more data than SLAC
 - Enhancements seen with M > 1 GeV
 - Moment / amplitude analysis underway
- K+ K- photoproduction also being studied

Work Towards Vector Meson Production Cross Sections

- Vector meson production cross sections provide important benchmarks
 - Comparison with previous measurements
 - Additional insight into production mechanisms
- Very preliminary "Work In Progress" shows similar beam energy dependence to previous measurements
- Recent data at lower beam energies taken for better comparison with CLAS results

Spectroscopy Prospects: $\gamma p \rightarrow p + \pi \eta$

M(2γ,pair 2) [GeV]

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

 $η π^0$

 $\pi^0\pi^0$

 $\eta \pi^0$

- πη / πη' promising channels for early hybrid searches
- With 20% of GlueX-I data, we see several well-known mesons
- Statistics are competitive with previous experiments

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

104

10³

10²

10
Spectroscopy Prospects: $\chi p \rightarrow p + \pi \eta$

Counts/12 MeV/c²

6000

5000

4000

3000

2000

D

7000 a₀(980)

- $\pi\eta$ / $\pi\eta'$ promising channels for early hybrid searches
- With 20% of GlueX-I data, we see • several well-known mesons
- Statistics are competitive with • previous experiments

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

 $\Delta^{++} + \pi^- \eta, \eta \rightarrow \gamma \gamma$

 $a_2(1320)$

GLUE

Preliminary

Prospects for Cascade Spectroscopy

- The Cascade (ssd, ssu) spectrum is poorly known nothing new since 1988!
 - LQCD predicts rich spectrum, many narrow states
- CLAS observed photoproduction of ground states

•

•

 Production of excited cascades via a forward-going kaon?

State	Quality
Ξ(1320)	(1/2)+ ****
Ξ(1530)	(3/2)+ ****
Ξ(1690)	***
Ξ(1820)	(3/2)- ***
Ξ(1950)	***
Ξ(2030)	***

Hunting for Excited Cascades

- GlueX can reconstruct these multi-step reactions in 2017 data
- Full GlueX-I data opens door for more detailed studies

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

J/ψ Photoproduction Near Threshold

leading-twist

higher-twist

J/ψ Photoproduction Near Threshold

J/ψ Photoproduction at GlueX

- Reconstruct $p \gamma \rightarrow p + J/\psi, J/\psi \rightarrow e^+e^-$
 - Kinematically fit fully reconstructed events

J/ψ Photoproduction at GlueX: Mass Spectrum

J/ψ Photoproduction at GlueX: Mass Spectrum

• Reconstruct $\mathbf{p} \mathbf{v} \rightarrow \mathbf{p} + \mathbf{J}/\mathbf{\psi}, \mathbf{J}/\mathbf{\psi} \rightarrow \mathbf{e}^+\mathbf{e}^-$

J/ψ Photoproduction at GlueX: Mass Spectrum

- Calculate J/ ψ cross sections normalized by non-resonant e+e-

Absolute acceptances and efficiencies currently under study

J/ψ @ GlueX: Cross sections vs. theory

SLAC points calculated from measured $d\sigma/dt$ and dipole t-dependence

Cornell horizontal error bars illustrate acceptance

- JPAC model includes nonresonant production and pentaquark B-W via VMD
 - Sensitive to $Br(P_c \rightarrow J/\psi p)$
- Simple analysis indicates we can set limits (3σ separation) for P_c(4450) production of 2% for J^P = 3/2⁻ and less for J^P = 5/2⁺
- Final UL systematics will include:
 - Description of t-channel
 - Interference between
 s- and t-channels

J/ψ @ GlueX: Unbinned E(γ) vs. t

- JPAC model: $2\% P_c(4450)$, $J^P = 5/2^-$
- Points: GlueX data in J/ψ mass region

GlueX Experimental Program

Experiment	Description	Beam Time (PAC days)
GlueX-I	Spectroscopy of light and hybrid mesons (low-intensity)	80
GlueX-II	Spectroscopy of hadrons with strange quark decays (high-intensity)	220+
PrimEx-eta	Eta radiative decay width	79
CPP	Charged pion polarizability	25
JEF	Rare eta decays	42

- Detector upgrades underway: DIRC for enhanced π/K separation being installed, CompCal for precision luminosity
- Rich menu of future ideas being developed: K_L beam, ω-photoproduction in nuclei, other ideas

GlueX-II: Enter the DIRC

- To study hybrids containing strange quarks, need clean identification of charged pions and kaons
- New addition: **DIRC** (Detection of Internally Reflected Cherenkov light)
- Installation & commissioning currently underway

Summary

- GlueX has started mapping the **normal** meson spectrum! First step towards establishing the **hybrid** meson spectrum.
- Phase I run completed, program of production & cross section measurements well underway
- Initial running will focus on spectroscopy of up/down quark states, initial studies of J/ ψ and other rare processes
- High-luminosity running will begin this year, extend reach to strange-quark states.
- A rich physics program is underway!

•

Backup Slides

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

Spin Density Matrix Elements (SDMEs): $\gamma p \rightarrow p + \omega$

- SDMEs measure the transfer of polarization from the photon to the vector meson
- Two matrix elements are particular sensitive to exchange particle in ω polarization transfer
 - Pomeron: +1/2 and -1/2
 - Pion: -1/2 and +1/2
- We observe around +0.35 and -0.35
- Updating with full GlueX-I data
- $\gamma p \rightarrow p + \phi$ and $p + \rho$ also under analysis

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

Spectroscopy Prospects: $\gamma p \rightarrow p + \eta \pi^+ \pi^-$

- Large sample of multiparticle decays collected as well
 - Example: $\eta \pi^+ \pi^-$ can have contributions from η_1 and b_1 hybrids
- Will analyze with models built from experience with 3-body reactions

J/ψ Photoproduction at GlueX — Pentaquark Production

Sidebar: Experiment and Theory Working Hand-in-Hand

A. Jackura et al. [JPAC and COMPASS Collaborations], PLB 779, 464 (2018) M. Mikhasenko et al. [JPAC and COMPASS Collaborations], in preparation

- Many searches, strongest evidence for π_1 in $\eta'\pi$ and $\rho\pi$ P-waves
- Resonance character not conclusively established

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

58

- Many searches, strongest evidence for π_1 in $\eta'\pi$ and $\rho\pi$ P-waves
- Resonance character not conclusively established

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

- Many searches, strongest evidence for π_1 in $\eta'\pi$ and $\rho\pi$ P-waves
- Resonance character not conclusively established

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

Light Meson Spectrum from Lattice QCD

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

Beam Asymmetries: $\gamma p \rightarrow p + \pi^0 / \eta$

- Understanding production mechanisms necessary to determine J^{PC} of mesons in amplitude analyses
- Beam asymmetry Σ yields information on production mechanisms

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

Angular Correlations in $\gamma p \rightarrow p + 4\gamma$

- Production near $\cos \theta \sim 1$ corresponds to meson production
- Stronger signal in $\eta'\pi^0$ than $\eta\pi^0$

GlueX Detector, October 2014 (w/ Curtis Meyer, Spokesman)

The GlueX Experiment in Hall D @ JLab

- The GlueX experiment is located in Hall D, newly constructed as part of the Jefferson Lab 12 GeV upgrade.
 - Large acceptance solenoidal spectrometer
 - Linearly polarized photon beam peaking at 9 GeV
 - Detects all decay products from full hadronic photoproduction rate
- 100+ Collaborators from 26 institutions

GlueX Detector, August 2014

The GlueX Experiment: Calorimetery

S. Dobbs — DNP/HAW2018 — October 25, 2018 — Precision and Exotics in Photoproduction with GlueX

The GlueX Experiment: Particle ID

S. Dobbs — DNP/HAW2018 — October 25, 2018 — Precision and Exotics in Photoproduction with GlueX

GlueX Calorimetry Performance

Measured using $\gamma p \rightarrow p \gamma \gamma \gamma \gamma events$
GlueX Tracking Performance

S. Dobbs — DNP/HAW2018 — October 25, 2018 — Precision and Exotics in Photoproduction with GlueX

GlueX Particle ID Performance

S. Dobbs — DNP/HAW2018 — October 25, 2018 — Precision and Exotics in Photoproduction with GlueX

Precision and Spectroscopy: BES III & J/ $\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Search by BES for resonances in $J/\psi \rightarrow \gamma \eta' \pi^+\pi^-$ in e⁺e⁻ annihilation
 - Structure seen near 2M(p)
 - Understanding evolves as more data collected

Precision and Spectroscopy: BES III & J/ $\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Search by BES for resonances in $J/\psi \rightarrow \gamma \eta' \pi^+\pi^-$ in e⁺e⁻ annihilation
 - Structure seen near 2M(p)
 - Understanding evolves as more data collected

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

Precision and Spectroscopy: BES III & $J/\psi \rightarrow \chi \eta' \pi^+\pi^-$

BES II: PRL 95, 262001 (2005)

ባለበባ

- Search by BES for resonances in $J/\psi \rightarrow \chi \eta' \pi^+\pi^-$ in e⁺e⁻ annihilation
 - Structure seen near 2M(p)
 - More data reveals more complexity, more sophisticated analysis required

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

X(1835)

 $J^{PC} = 0^{-}$

Precision and Spectroscopy: BES III & $J/\psi \rightarrow \chi \eta' \pi^+\pi^-$

160

BES II: PRL 95, 262001 (2005)

ብረቢ

58x10⁶ J/ψ

- Search by BES for resonances in $J/\psi \rightarrow \chi \eta' \pi^+\pi^-$ in e⁺e⁻ annihilation
 - Structure seen near 2M(p)
 - More data reveals more complexity, more sophisticated analysis required

S. Dobbs — GSI — Feb. 13, 2019 — Searching for Exotic Hadrons at GlueX: From light quarks to charm

X(1835)

 $J^{PC} = 0^{-}$

Introduction

- Quantum Chromodynamics (QCD)
 - Degrees of freedom: quarks and gluons
 - Rich spectrum of bound states predicted
 - Outstanding questions remain e.g., What is the nature of confinement?
- New understanding gained by studying spectrum of bound QCD states
 - Recent progress in understanding hadron spectrum driven by large, high-quality data sets
 - New theoretical tools essential for accurately interpreting this data

QCD and Hadron Spectroscopy

- Idea: study QCD through spectrum of bound states
 - Static properties of known hadrons well described by firstprincipals calculations
 - Modern experiments provide unprecedented data sets to push boundaries of our knowledge
- Open questions:
- What is the origin of confinement?
- Which color-singlet states exist in nature?
- Do gluonic degrees of freedom manifest themselves in the bound states that we observe?

