OPEN CHARM SPECTROSCOPY Marco Pappagallo University of Edinburgh 18 April 2018

STRUCTURE OF HADRONS

Tetra- and Penta-quarks conceived at the birth of the quark model

STRUCTURE OF HADRONS

Tetra- and Penta-quarks conceived at the birth of the quark model

18 April 2018

PLETHORA OF EXOTIC CANDIDATES

Year Status

Eur.Phys.J. C74 (2014) 10, 2981

State	<i>M</i> , M	eV Γ, Μ	$eV J^P$	^C Process (mode)	Experiment $(\#\sigma)$	Year	Statu
X(3872)	3871.68 ± 0	.17 < 1.	2 1+	$^+ B \rightarrow K(\pi^+\pi^- J/\psi)$	Belle [810, 1030] (>10), BaBar [1031] (8.6)	2003	Ok
				$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) \dots$	CDF [1032, 1033] (11.6), D0 [1034] (5.2)	2003	Ok
				$pp \rightarrow (\pi^+\pi^- J/\psi) \dots$	LHCb [1035, 1036] (np)	2012	Ok
				$B \rightarrow K(\pi^+\pi^-\pi^0 J/\psi)$	Belle [1037] (4.3), BaBar [1038] (4.0)	2005	OR
				$B \rightarrow K(\gamma J/\psi)$	Belle [1039] (5.5), BaBar [1040] (3.5)	2005	Ok
				$B \to K(\gamma \psi(2S))$	LHCb [1041] (> 10) BaBar [1040] (3.6), Belle [1039] (0.2) LHCb [1041] (4.4)	2008	NC!
				$B \rightarrow K(D\bar{D}^*)$	Belle [1042] (6.4), BaBar [1043] (4.9)	2006	Ok
$Z_c(3885)^+$	3883.9 ± 4	4.5 $25 \pm$	12 1+	$^{-}$ Y(4260) $\rightarrow \pi^{-}(D\bar{D}^{*})^{+}$	BÉS III [1044] (np)	2013	NC!
$Z_c(3900)^{-1}$	3891.2 ± 3	3.3 40±	8 ? ^{?-}	$Y(4260) \to \pi^-(\pi^+ J/\psi)$	BES III [1045] (8), Belle [1046] (5.2) T. Xiao <i>et al.</i> [CLEO data] [1047] (>5)	2013	Ok
$Z_c(4020)$	$4022.9 \pm$	2.8 $7.9 \pm$	3.7 ?:-	$Y(4260, 4360) \rightarrow \pi^{-}(\pi^{+}h_{c})$) BES III [1048] (8.9)	2013	NC
$Z_{c}(4025)^{\neg}$	4026.3 ±	$4.5 24.8 \pm$	9.5 ?	$Y(4260) \to \pi^{-}(D^{*}D^{*})^{+}$	BES III [1049] (10)	2013	NC
$Z_b(10610)$	$10607.2 \pm 10007.2 \pm 100000000000000000000000000000000000$	$2.0\ 18.4 \pm$	2.4 1	$T(10860) \rightarrow \pi(\pi T(1S, 2S, 3))$	(55)) Belle [1050–1052] (>10) P_ll_ (10511 (16)	2011	Ok
				$1(10800) \rightarrow \pi (\pi \cdot h_b(1P))$	2P)) Belle [1051] (16) B-lle [1052] (8)	2011	NC
7. (10650)	+ 10652.2.4	1 5 11 5 4	9.9.1+	$1(10860) \rightarrow \pi (BB)$	Delle [1055] (8) R-26)) R-11- [1050, 1051] (> 10)	2012	- NOI
26(10030)	10032.2 ±	1.0 11.0 ±	2.2 1	$\Upsilon(10860) \rightarrow \pi^-(\pi^+1)(13,2)$	2P)) Belle [1050, 1051] (>10) Belle [1051] (16)	2011	Ok
				$\Upsilon(10860) \rightarrow \pi^{-}(B^{*}\bar{B}^{*})^{+}$	Belle [1051] (10) Belle [1053] (6.8)	2012	NC
$\chi_{-2}(2P)$	3027.2 ± 2.6	24 ± 6	2++	$e^+e^- \rightarrow e^+e^-(D\bar{D})$	Belle [1002] (5.3) BaBar [1003] (5.8)	2005	Ok.
X(2040)	2049+9	27+27	2?+	$e^+e^- \rightarrow I/e^+(D\bar{D}^*)$	Belle [1092] (0.0), Dabai [1090] (0.0)	2005	NCI
A (3940)	3942_8	07-17		$e^+e^- \rightarrow J/\psi(DD^-)$	Delle [1080, 1087] (0)	2005	NO
r (4008)	3891 ± 42	255 ± 42	1	$e \cdot e \rightarrow (\pi \cdot \pi J/\psi)$	Belle [1046, 1094] (7.4)	2007	NG
$\psi(4040)$	4039 ± 1	80 ± 10	1	$e^+e^- \rightarrow (D^{(*)}D^{(*)}(\pi))$	PDG [1]	1978	Ok
	1.24	1.51	- 0 -	$e^+e^- ightarrow (\eta J/\psi)$	Belle [1095] (6.0)	2013	NC!
$Z(4050)^+$	4051_{-43}	82_55	714	$B^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle [1096] (5.0), BaBar [1097] (1.1)	2008	NC
Y(4140)	4145.8 ± 2.6	18 ± 8	?'+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF [1098] (5.0), Belle [1099] (1.9),	2009	NC!
					LHCb [1100] (1.4), CMS [1101] (>5)		
					D0 [1102] (3.1)		
$\psi(4160)$	4153 ± 3	103 ± 8	1	$e^+e^- \rightarrow (D^{(*)}D^{(*)})$	PDG [1]	1978	Ok
				$e^+e^- ightarrow (\eta J/\psi)$	Belle [1095] (6.5)	2013	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/\psi \left(D^*\bar{D}^*\right)$	Belle [1087] (5.5)	2007	NC!
$Z(4200)^+$	4196^{+35}_{-30}	370^{+99}_{-110}	1+-	$\bar{B}^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle [1103] (7.2)	2014	NC!
$Z(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	??+	$\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle [1096] (5.0), BaBar [1097] (2.0)	2008	NC
Y(4260)	4250 ± 9	108 ± 12	1	$e^+e^- \rightarrow (\pi \pi J/\psi)$	BaBar [1104, 1105] (8), CLEO [1106, 1107] (11)	2005	Ok
					Belle [1046, 1094] (15), BES III [1045] (np)		
				$e^+e^- \to (f_0(980)J/\psi)$	BaBar [1105] (np), Belle [1046] (np)	2012	Ok
				$e^+e^- \rightarrow (\pi^- Z_c(3900)^+)$	BES III [1045] (8), Belle [1046] (5.2)	2013	Ok
				$e^+e^- \rightarrow (\gamma X(3872))$	BES III [1108] (5.3)	2013	NC!
Y(4274)	4293 ± 20	35 ± 16	??+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF [1098] (3.1), LHCb [1100] (1.0),	2011	NC!
					CMS [1101] (>3), D0 [1102] (np)		
X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	$0/2^{?+}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [1109] (3.2)	2009	NC!
Y(4360)	4354 ± 11	78 ± 16	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1110] (8), BaBar [1111] (np)	2007	Ok
$Z(4430)^+$	4458 ± 15	166^{+37}_{-32}	1+-	$\bar{B}^0 \rightarrow K^-(\pi^+\psi(2S))$	Belle [1112, 1113] (6.4), BaBar [1114] (2.4)	2007	Ok
,		-36			LHCb [1115] (13.9)		
				$\bar{B}^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle [1103] (4.0)	2014	NC!
X (4630)	4634+9	92^{+41}	1	$e^+e^- \rightarrow (\Lambda^+ \bar{\Lambda}^-)$	Belle [1116] (8.2)	2007	NC
Y(4660)	4665 ± 10	52 - 32 53 + 14	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1110] (5.8), BaBar [1111] (5)	2007	Ok
T(10860)	10876 ± 11	55 ± 28	1	$a^+a^- \rightarrow (B^{(*)}\bar{B}^{(*)}(\pi))$	PDC [1]	1095	Ok
1 (10800)	10870 ± 11	30 ± 20	1	$e^+e^- \rightarrow (B_{(s)}B_{(s)}(\pi))$	FDG [1]	1960	OK
				$e^+e^- \rightarrow (\pi\pi T(1S, 2S, 3S))$	Belle [1051, 1052, 1117] (>10)	2007	Ok
				$e \cdot e \rightarrow (f_0(980) \uparrow (1S))$	Belle [1051, 1052] (>5)	2011	OR
				$e^+e^- \rightarrow (\pi Z_b(10610, 10650))$	Belle [1051, 1052] (>10)	2011	OR
				$e^+e^- \rightarrow (\eta T(1S, 2S))$	Belle [986] (10)	2012	Ok
		18.0		$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(1D))$	Belle [986] (9)	2012	Ok
$Y_b(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(nS))$	Belle [1118] (2.3)	2008	NC!

[PRL 118 (2017) 022003, PRD 95 (2017) 012002]

M. Pappagallo

18 April 2018

PLETHORA OF EXOTIC CANDIDATES

Eur.Phys.J. C74 (2014) 10, 2981

State	M , MeV Γ ,	MeV J	PC Process (mode)	Experiment $(\#\sigma)$	Year	Status	8
X(3872)	$3871.68 \pm 0.17 <$	1.2 1	$^{++}B \rightarrow K(\pi^+\pi^- J/\psi)$	Belle [810, 1030] (>10), BaBar [1031] (8.6) 2003	Ok	
			$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) \dots$	CDF [1032, 1033] (11.6), D0 [1034] (5.2)	2003	Ok	[DRI 115 (9015) 079001]
			$pp \rightarrow (\pi^+\pi^- J/\psi) \dots$	LHCb [1035, 1036] (np)	2012	Ok	$\begin{bmatrix} 1 & 11 & 113 \\ 2013 & 072001 \end{bmatrix}$
			$B \rightarrow K(\pi^+\pi^-\pi^0 J/\psi)$	Belle [1037] (4.3), BaBar [1038] (4.0)	2005	Ok	
			$B \rightarrow K(\gamma J/\psi)$	Belle [1039] (5.5), BaBar [1040] (3.5)	2005	Ok	
				LHCb [1041] (> 10)			
			$B \rightarrow K(\gamma \psi(2S))$	BaBar [1040] (3.6), Belle [1039] (0.2)	2008	NC!	Φ ⁸⁰⁰ F
			0.00	LHCb [1041] (4.4)			
			$B \rightarrow K(D\bar{D}^*)$	Belle [1042] (6.4), BaBar [1043] (4.9)	2006	Ok	$\overline{\Box}$
$Z_{c}(3885)^{+}$	3883.9 ± 4.5 25 :	± 12 1	$^{+-}$ $Y(4260) \rightarrow \pi^{-} (D\bar{D}^{*})^{+}$	BES III [1044] (np)	2013	NC!	
$Z_{c}(3900)^{+}$	$3891.2 \pm 3.3 40$	± 8 ?	$Y(4260) \rightarrow \pi^{-}(\pi^{+}J/\psi)$	BES III [1045] (8), Belle [1046] (5.2)	2013	Ok	
				T. Xiao et al. [CLEO data] [1047] (>5)			
$Z_{c}(4020)^{+}$	4022.9 ± 2.8 7.9 :	± 3.7 ? ⁵	Y^{-} $Y(4260, 4360) \rightarrow \pi^{-}(\pi^{+}h_{c})$	BES III [1048] (8.9)	2013	NC!	
$Z_{c}(4025)^{+}$	$4026.3 \pm 4.5, 24.8$	+9.5 ?	$^{-}$ $Y(4260) \rightarrow \pi^{-}(D^{*}\bar{D}^{*})^{+}$	BES III [1049] (10)	2013	NC	
Z _b (10610) ⁺	10607.2 ± 2.0 18.4	+2.4 1	$^{+-}$ $\Upsilon(10860) \rightarrow \pi(\pi\Upsilon(15,25,35))$	Belle [1050–1052] (>10)	2011	Ok	
20(10010)	100011211210 1011		$\Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}h_{*}(1P,2P))$	Belle [1051] (16)	2011	Ok	
				Delle [1001] (10)	2011	- CA	

All of them are charmonium/bottomonium-like states

- > What about exotic candidates with a single *c* or *b* quark?
 - X(5568)[±] → B_s⁰ π[±] claimed by D0 but disproved by LHCb, CMS, ATLAS and CDF

 \succ D_{s0}*(2317)⁺ and D_{s1}(2460)⁺ \leftarrow Today

				$e^+e^- \to (f_0(980)J/\psi)$	BaBar [1105] (np), Belle [1046] (np)	2012	Ok		ICR
				$e^+e^- \rightarrow (\pi^- \Sigma_c(3900)^+)$	BES III [1045] (8), Belle [1046] (5.2)	2013	OK NOI		7
			-9.1	$e^+e^- \rightarrow (\gamma A (3872))$	BES III [1108] (5.3)	2013	NG		
Y(4274)	4293 ± 20	35 ± 16	?'+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF [1098] (3.1), LHCb [1100] (1.0),	2011	NC!		101
					CMS [1101] (>3), D0 [1102] (np)				,0,
X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	$0/2^{?+}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [1109] (3.2)	2009	NC!	NCI Š X(4140) 10 10 10 10 15	6σ
Y(4360)	4354 ± 11	78 ± 16	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1110] (8), BaBar [1111] (np)	2007	Ok		
$Z(4430)^+$	4458 ± 15	166^{+37}_{-32}	1+-	$\bar{B}^0 \rightarrow K^-(\pi^+\psi(2S))$	Belle [1112, 1113] (6.4), BaBar [1114] (2.4)	2007	Ok	Ok 8.4σ	
					LHCb [1115] (13.9)				
				$\bar{B}^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle [1103] (4.0)	2014	NC!		
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$e^+e^- \rightarrow (\Lambda_c^+ \bar{\Lambda}_c^-)$	Belle [1116] (8.2)	2007	NC!		
Y(4660)	4665 ± 10	53 ± 14	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1110] (5.8), BaBar [1111] (5)	2007	Ok	Ok 40 X(4500)	
Υ(10860)	10876 ± 11	55 ± 28	1	$e^+e^- \rightarrow (B^{(*)}_{(s)}\bar{B}^{(*)}_{(s)}(\pi))$	PDG [1]	1985	Ok	Ok X(42/4)	
				$e^+e^- \rightarrow (\pi\pi\Upsilon(1S, 2S, 3S))$	Belle [1051, 1052, 1117] (>10)	2007	Ok	0k 0.1σ //////	
				$e^+e^- \rightarrow (f_0(980)\Upsilon(1S))$	Belle [1051, 1052] (>5)	2011	Ok	Ok 20	וו
				$e^+e^- \rightarrow (\pi Z_b(10610, 10650))$	Belle [1051, 1052] (>10)	2011	Ok	Ok - Contraction	i.
				$e^+e^- \rightarrow (\eta \Upsilon(1S, 2S))$	Belle [986] (10)	2012	Ok	Ok OLI CARACTERISTICS	M
				$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(1D))$	Belle [986] (9)	2012	Ok	Ok 4100 4200 4300 4400 4500 4600 4700	4800
$Y_b(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(nS))$	Belle [1118] (2.3)	2008	NC!	NC! m _{J/wb}	[MeV]

18 April 2018

HEAVY QUARK EFFECTIVE THEORIES

The heavy quark effective theories (HQET) predict the masses of the heavy mesons $D_{(s)}$ and $B_{(s)}$ by a perturbative expansion of $\Lambda_{QCD}/m_Q\sim 0$

Precise measurements of the excited heavy meson properties are a sensitive test of the validity of HQET

18 April 2018

HEAVY MESONS IN HQET

 \vec{S}_{q} \vec{L} Orbital angular momentum $\vec{j}_{q} = \vec{L} + \vec{s}_{q=u,d,s}$ Angular momentum of the light quark $\vec{J} = \vec{j}_{q} + \vec{s}_{Q=b,c}$ Total angular momentum of the heavy Total angular momentum of the heavy meson

The light quark quantum number (j_{α}) decouples and it is independent of the spin of heavy quark (s_{Ω})

L=1 EXCITED CHARMED MESONS IN HQET

For L>0, there are four different possible (J, j_q) combinations

E.g. Orbitally L=1 excited $D_s^{**} \rightarrow D^{(*)}K$

18 April 2018

SPECTROSCOPY TECHNIQUE

Large cross sections

- Large combinatorial background
- Resonances appear as bumps
- Hard to disentangle broad structures
- Difficult to assess spin due to the unknown initial polarization
- Presence of "reflections"/"feed-downs"

18 April 2018

Spectroscopy Technique

18 April 2018

M. Pappagallo

Spectroscopy Technique

18 April 2018

SPECTROSCOPY TECHNIQUE (II)

- Limited statistics
- Small background
- Resonance characterized by amplitude (i.e. bump) AND phase (i.e. interference)
- Suitable to study broad resonances
- Spin-parity assignment by amplitude analysis

18 April 2018

M. Pappagallo

00

[BaBar: PRD83 (2011) 052001]

18 April 2018

KINEMATICAL REFLECTIONS/SHADOWS

THE EXCITED D STATES

THE EXCITED D STATES

Broad states of the j=1/2 doublets also resolved by an amplitude analysis

THE EXCITED D STATES

- > The charmed excited states studied in inclusive analyses and into B decays
- ➤ The orbitally L=1 excited D^{**} states observed first
- Masses and properties well predicted by theory

18 April 2018

THE EXCITED D_S STATES

- > The charmed excited states studied in inclusive analyses and into B decays
- > The orbitally L=1 excited D_s^{**} states observed first
- Masses and properties well predicted by theory

18 April 2018

PUZZLE: EXCITED D_S MESONS: L=1, $j_q = 1/2(?)$

PDG	Mass (MeV)	Width (MeV)	Surprisingly
$D_{s0}^*(2317)^{\pm}$	2317.7 ± 0.6	< 3.8	narrow!
$D_{s1}(2460)^{\pm}$	2459.5 ± 0.6	< 3.5	

ARE THEY THE MISSING L=1 STATES?

ARE THEY THE MISSING L=1 STATES?

▶ Different mass splitting between the two doublets in a \overline{qq} scenario: $M_{D_{s1}(2460)} - M_{D_{s0}^*(2317)} \neq M_{D_{s2}^*(2573)} - M_{D_{s1}(2536)}$

▷ B→DD_{s0}* branching ratios below expectations (i.e. ~1) for a qq state [PLB572, 164 (2003)][PRD69, 054002 (2004)]

$$\frac{\mathcal{B}(B^+ \to \bar{D}^0 D_{s0}^{*+})}{\mathcal{B}(B^+ \to \bar{D}^0 D_{s}^{*+})} = 0.081^{+0.032}_{-0.025}$$
$$\frac{\mathcal{B}(B^0 \to D^- D_{s0}^{*+})}{\mathcal{B}(B^0 \to D^- D_{s0}^{*+})} = 0.13 \pm 0.04$$

No $D_s^+\pi^\pm$ partners have been observed in inclusive studies [BaBar: PRD74 (2006) 032007] or in B decays [Belle: PRD 91 (2015) 092011] (upper limits more than an order of magnitude lower)

Search For "D_{s0}*" in B_s Decays

18 April 2018

[LHCb: PRL 113 (2014) 162001] [LHCb: PRD 90 (2014) 072003]

24

PUZZLE II: IS $D_{S1}(2536)^+$ THE EXCITED L=1, $j_q=3/2$ STATE?

[Belle: PRD77 (2008) 032001]

Contrary of HQET expectations, the S-wave contribution dominates!

18 April 2018

HIGHLY EXCITED D(s) MESONS

M. Pappagallo

28

EXCITED D_(S) SPECTRA

- Likely to be radially or L=2 excitations
- More studies requires: missing states, quantum numbers,...

18 April 2018

Baryon Spectroscopy

HEAVY BARYONS IN HQET

Heavy baryon modeled as a system consisting of a static heavy quark Q surrounded by a diquark system comprised of the two light quarks

> Orbital angular momentum between the two light quarks Orbital angular momentum between the heavy quark and the diquark system Total orbital angular momentum Sum of light quarks spins Spin of the heavy quark Angular momentum of the diquark system Total angular momentum of the heavy meson

Parity
$$P = (-1)^{\ell_{\rho} + \ell_{\lambda}}$$

18 April 2018

 $\vec{L} = \vec{\ell_{
ho}} + \vec{\ell_{\lambda}}$

 $\vec{s}_{qq} = \vec{s}_{q_1} + \vec{s}_{q_2}$

 $\vec{s}_{Q=b,c}$ $\vec{j}_{qq} = \vec{L} + \vec{s}_{qq}$

 $\vec{J} = \vec{j}_{qq} + \vec{s}_Q$

ORBITALLY EXCITED BARYONS

The ρ - and λ -mode excitations of the single-heavy baryon

EXCITED $\Omega^0_{\ c}$ STATES

Only the ground states Ω_c^0 (J^P=1/2⁺) and Ω_c^{*0} (J^P=3/2⁺) are known so far

18 April 2018

WHERE TO LOOK AT?

Decays to $\Omega_c^0 \pi^0$ and $\Omega_c^{*0} \pi^0$ final states are suppressed by isospin-violation Investigation of the decays to the $\Xi_c^{+}K^{-}$ final state

THE $\Xi_{c}^{+}K^{-}$ MASS SPECTRUM

[LHCb: PRL 118 (2017) 182001]

 $10^6 \Xi_c^{+}$ candidates combined to kaons with opposite charge

5 narrow peaks in $\Xi_c^+K^-$!

No peaks in the wrong sign sample $\Xi_c^+K^+$ No peaks in the Ξ_c^+ -sidebands K⁻ sample

18 April 2018

THE $\Xi_{c}^{+}K^{-}$ MASS SPECTRUM

[LHCb: PRL 118 (2017) 182001]

 $10^6 \Xi_c^{+}$ candidates combined to kaons with opposite charge

5 narrow peaks in $\Xi_c^+K^-$!

No peaks in the wrong sign sample $\Xi_c^+K^+$ No peaks in the Ξ_c^+ -sidebands K⁻ sample

18 April 2018

THE E⁺K⁻ MASS SPECTRUM

[LHCb: PRL 118 (2017) 182001]

18 April 2018

FIVE NEW EXCITED $\Omega^0_{\ c}$ STATES!

[LHCb: PRL 118 (2017) 182001]

- > Observation of 5 new excited Ω_c states! Two of them extremely narrow
- First time so many states observed in a single mass spectrum
- Comprehensive explanation of all peaks challenges our current knowledge

CONFIRMATION OF EXCITED $\Omega^0_{\ c}$ AT BELLE

[Belle: PRD 97(2018) 051102]

- ➤ 4 out of 5 states confirmed
- The narrow state at high mass is missing (not in disagreement with the LHCb observation)

18 April 2018

WHAT ARE THEY? WHY ARE THEY SO NARROW?

Are they orbitally excited (L=1) states? Or radiatally excitations? Or...

TABLE II: Spin-parity (J^P) numbers of the newly observed Ω_c states suggested in various works.

State	<u>[19]</u>	[20]	[21]	[23]	[<u>29</u>]	[25]	[27]	[28]	[32]	[26]	This work
$\Omega_c(3000)$		1/2-	1/2- (3/2-)	1/2-	1/2-	1/2-	1/2-	1/2 ⁺ or 3/2 ⁺	1/2-		1/2-
$\Omega_c(3050)$		$1/2^{-}$	1/2- (3/2-)	$1/2^{-}$	$5/2^{-}$	$3/2^{-}$	$1/2^{-}$	$5/2^{+} \text{ or } 7/2^{+}$	$3/2^{-}$		3/2-
$\Omega_c(3066)$	$1/2^{+}$	$1/2^+$ or $1/2^-$	$3/2^{-}(5/2^{-})$	$3/2^{-}$	$3/2^{-}$	$5/2^{-}$	$3/2^{-}$	3/2-	$1/2^{+}$		3/2-
$\Omega_c(3090)$			$3/2^{-}(1/2^{+})$	$3/2^{-}$	$1/2^{-}$	$1/2^{+}$	$3/2^{-}$	5/2-	$1/2^{+}$		5/2-
$\Omega_c(3119)$	$3/2^{+}$	3/2+	5/2- (3/2+)	$5/2^{-}$	$3/2^{-}$	$3/2^{+}$	$5/2^{-}$	5/2 ⁺ or 7/2 ⁺	$3/2^{+}$	$1/2^{-}$	$1/2^+$ or $3/2^+$

[K.-L. Wang, L.-Y. Xiao, X.-H. Zhong, Q. Zhao, Phys. Rev. D95 (2017) 116010]

... are they pentaquarks?

PENTAQUARK INTERPRETATION

The structure of pentaquarks Ω_c^0 in the chiral quark model

Gang Yang¹, Jialun Ping¹ Department of Physics and Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 20028, P. R. China

Recently, the experimental results of LHCb Collaboration suggested the existence of five new excited states of B_{1}^{\prime} , Ω_{1}^{\prime} (3000)², Ω_{1}^{\prime} (3)² and Ω_{1}^{\prime} (3)² is performed in the framework of distance parameters are expansion method. The results show the $DL \equiv E_{1}^{\prime} R$ and $\Omega_{1}^{\prime} R^{\prime}$ are explicitly of the state. The distance between quick pairs suggested with the net hard neural explanation. The results of the state scale scale

Narrow pentaquarks as diquark-diquark-antiquark systems

V.V. Anisovich⁺, M.A. Matveev⁺, J. Nyiri^{*}, A.N. Semenova⁺,

June 6, 2017

Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute", Gatchina, 188300, Russia

*Institute for Particle and Nuclear Physics, Wigner RCP, Budapest 1121, Hungary

Abstract

The diquark-diguark-antiquark model describes pertaquark states both in terms of quarks and hadrons. The latest LHCb data for pentaquarks with open charm emphasize the importance of hadron components in the structure of pentaquarks. We discuss pertaquark states with hidden charm P(courd) and those with open charm P(usses) which were discovered reactly in LHCb data (J/W pan dz; K^{*} spectra correspondingly). Considering the observed states as members of the lowest (*-www*) multiplet we discuss the mass splitting of states and the dumping of their withs.

The observed Ω_c^0 resonances as pentaquark states

C. S. An^{*} and H. Chen

School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China (Dated: May 25, 2017)

Abstract

In present work, we investigate the spectrum of several low-lying sscap pentaquark configurations employing the constituent quark model, within which the hyperfine interaction between quarks is taken to be mediated by Goldstone boson exchange. Our numerical results show that four sscap configurations with $J^P = 1/2^-$ or $J^P = 3/2^-$ lie at energies very close to the recently observed five Ω_c^0 states by LHCb collaboration, this indicates that the sscap pentaquark configurations may form sizable components of the observed Ω_c^0 resonances.

On a possibility of charmed exotica

Hyun-Chui Kim, ^{1,2} Maxim V. Polyakov, ^{3,4} and Michai Preszałowicz⁵ ¹Operatent of Physics, Into Twiererity, Incheme 2212, Remain Conf. Korel, ²School of Physics, Koren Institute for Advanced Study (KIAS), Soud 05455, Reynkite of Koren ³Institut für Theoretischer Physics, II, Rubri-Universitäl Robulum, O-14708, Hochum, Germand ⁴Petersburg Nuclear Physics, Jageilounian Universitä, Robulum, 189, 503, Kruska, Polane⁴ ⁴Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁴Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁶Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁶Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁶Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁶Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁶Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁶Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁷Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁸Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁸Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁸Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁸Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁸Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁸Smoluchowski Institute of Physics, Jageilounian Universitä, Robulum 188, 500, Russia ⁸Smoluchowski Institute of Physicski Institute of Physics, Jageilounian 188, 500, Russia ⁸Smoluchowski Institute of Physics, Jageilounian 188, 500, Russia ⁸Smoluchowski Institute of Physicski I

We employ the chiral quark-soliton model to describe excited baryons with one heavy quark. Identifying known charmed baryons with multiplets allowed by the model, we argue that apart from regular excitations of the ground state multiplets, some of recently reported by the LHCb collaboration narrow Ω_c^2 states, may correspond to the exotic pentaquarks. This interpretation can be easily verified experimentally, since exotic Ω_c^2 states – contrary to the regular excitations – form isosphi triplets; rather than singlets.

Suppressed due to the e⁺e⁻ production?

18 April 2018

Plans & Prospects

EXCITED D_(S) MESONS

$\checkmark D_{s0}^{*}(2317)$ and $D_{s1}(2460)$:

- Search for new decays modes
- ➢ Production studies (e.g. $D_{s1}(2460)$ → D_s γ production cross-section)
- ≻ Studies from B_s^0 decays (e.g. $B_s^0 \rightarrow D_s^- \pi^0 \pi^+$)
 - > Determination of $D^*_{s0}(2317)$ (and D_s^*) spin-parity
 - Measurement of BR
 - ≻ Search for $D^*_{s0}(2317)^0 \rightarrow D_s^- \pi^+$

Decay Channel	$D_{sJ}^{*}(2317)^{+}$	$D_{sJ}(2460)^+$	$\overset{2500}{=} \qquad \qquad$
$D_s^+\pi^0$	Seen	Forbidden	e Unofficial
$D_s^+\gamma$	Forbidden	Seen	
$D_s^+ \pi^0 \gamma$ (a)	Allowed	Allowed	$D_{a}(2460)^{+} \rightarrow D_{a}^{+} \gamma$
$D_s^*(2112)^+\pi^0$	Forbidden	Seen	Partially Reconstructed Decays □ D ₁₀ (2460) ⁺ → D ⁺ ₁ = ²
$D_{sJ}^{*}(2317)^{+}\gamma$		Allowed	ר ביי ביי ביי ביי ביי ביי ביי ביי ביי בי
$D_s^+\pi^0\pi^0$	Forbidden	Allowed	
$D_s^+ \gamma \gamma$ (a)	Allowed	Allowed	500
$D_{s}^{*}(2112)^{+}\gamma$	Allowed	Allowed	
$D_s^+\pi^+\pi^-$	Forbidden	Seen	2000 2100 2200 2300 2400 2500 2600 2
			m(D _s ⁺ γ) [MeV/c ²

18 April 2018

EXCITED Ω^0_c : **DETERMINATION OF SPIN-PARITY J**^P

Study of Ω_c^{**} in fully reconstructed decays: (e.g.) $\Omega_b^- \rightarrow \Xi_c^+ K^- \pi^-$

The decays $\Omega_b^- \rightarrow \Omega_c^0$ ($\rightarrow pKK\pi$) π^- already observed. Same number and type of tracks in the final state

SUMMARY

- Observations of new states challenge our current understanding of QCD and the validity of the HQET assumptions
- Interplay between light and heavy quark spectroscopy: (e.g.) the poor knowledge of N*, Λ* baryons has a large impact
- Sinergy with the theoretical community to improve models in amplitude analyses

The LHC experiments will go under major upgrade in the next years, while Belle II will be starting taking data. PANDA, J-PARC, JLab and other hadron facilities will play an importat role as well.

18 April 2018

Back-up slides

Relevance of the Width

> The width might be sensitive to the model and internal structure

	_		
			$\Gamma(D_{s1}(2460)^+ \to D_s^* \pi^0) \text{ (keV)}$
	C	PRD 68 (2003) 054024	21.5
		PRD 69 (2004) 114008	32
		PRD 73 (2006) 034004	35 - 51
-	J	PRD 73 (2006) 054012	35
CS ·	1	PLB 568 (2003) 254	$\simeq 10$
		EPJC 47 (2006) 445	1.86 - 4.42
		PLB 570 (2003) 180	7 ± 1
	C	arXiv:1406.5804	9.0 ± 2.1
Molecule .	5	PRD 76 (2007) 014005/8	50.1 - 79.2
	L	EPJA (2014) 50	78 ± 14

N.B. $\Gamma(D_{s1}(2460)^+ \to D_s^* \pi^0) / \Gamma_{TOT} = (48 \pm 11)\%$

18 April 2018

3-BODY DECAY WITH SPINLESS DAUGHTERS

Constraints	Degree of freedom
3 four-vectors	12
4-momentum conservation	-4
3 masses	-3
3 Euler angles	-3
ТОТ	2

$$d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{32M^3} \overline{|\mathcal{M}|^2} dm_{12}^2 dm_{23}^2$$

DALITZ PLOT

$$d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{32M^3} \overline{|\mathcal{M}|^2} dm_{12}^2 dm_{23}^2$$

The scatter plot m_{12}^2 vs m_{23}^2 is usually called *Dalitz* plot

 $|\mathcal{M}|^2 = Const \Rightarrow Dalitz uniformly populated$ Nonuniformity \Rightarrow Information on $|\mathcal{M}|^2$

$$J/\psi \to \pi^+ \pi^- \pi^0$$

 $m^{2}(\pi^{-}\pi^{0})$ (GeV/c²)² 0 $m^{2}(\pi^{+}\pi^{0})$ (GeV/c²)²

"I visualize geometry better than numbers."

$$D^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$$
LHCb
(a)

18 April 2018

0

 $m^2(\pi^0\pi^0) / \operatorname{GeV}^2$

 $p\bar{p} \to \pi^0 \pi^0 \pi^0$

 $m^2(\pi^0\pi^0) / GeV^2$

2

EXCITED D_S STATES: INCLUSIVE ANALYSIS

[LHCb: JHEP 10 (2012) 151]

18 April 2018

M. Pappagallo

EXCITED D_J STATES

[LHCb, JHEP 09 (2013) 145]

The quark model predicts many excited N** 2.8 states in limited mass regions Ground and 1P states well established Mass BaBar collaboration found 4 new states 2.6 decaying to $D\pi$ and/or $D^*\pi$. Need to be D(2S)confirmed. [PRD82 (2010)111101] 2.42.2 LHCb: Inclusive study of $D^+(\rightarrow K\pi\pi)\pi^-$, $D^0(\rightarrow K\pi)\pi^+$ and $D^*\pi$ $D^{*+}\pi^{-}$. Several millions of *D*'s in 1 fb⁻¹ Dπ Godfrey, Isgur [PRD 32, 189 (1985)] - Di Pierro, Eichten [PRD 64 (2001) 114004] Natural spin-parity states ($J^P = 0^+, 1^-, 2^+, 3^-$ Observed ...) can decay to $D\pi$ and $D^*\pi$ ${}^{2S+1}L_{J}{}^{1}S_{0}{}^{3}S_{1}{}^{1}P_{0}{}^{3}P_{1}{}^{1}P_{1}{}^{3}P_{2}{}^{1}D_{1}{}^{3}D_{2}{}^{1}D_{2}{}^{3}D_{3}$ Unnatural spin-parity states ($J^P = 0^-, 1^+, 2^-,$ j_q 1/2 1/2 1/2 1/2 3/2 3/2 3/2 3/2 5/2 5/2 3^+ ...) can decay D* π $J^{P} 0^{-} 1^{-} 0^{+} 1^{+} 1^{+} 2^{+} 1^{-} 2^{-} 2^{-} 3^{-}$

D^(*)π Mass Spectra

18 April 2018

18 April 2018

18 April 2018

D⁰π⁺/D⁺π⁻ Mass Spectra

3000

 $m(D^0\pi^+)$ [MeV]

2800

[LHCb, JHEP 09 (2013) 145]

2600

2 more natural states:
$D_{J}^{*}(3000)^{0}, D_{J}^{*}(3000)^{+}$

2400

2200

Study of D^(*)π spectrum from B decays required to determine spin-parity

Resonance	Final state	Mass (MeV)	Width (MeV)	Yields $\times 10^3$	Signif (σ)
$D_1(2420)^0$	$D^{*+}\pi^{-}$	$2419.6 \pm 0.1 \pm 0.7$	$35.2 \pm 0.4 \pm 0.9$	$210.2 \pm 1.9 \pm 0.7$	
$D_2^*(2460)^0$	$D^{*+}\pi^{-}$	$2460.4 \pm 0.4 \pm 1.2$	$43.2 \pm 1.2 \pm 3.0$	$81.9 \pm 1.2 \pm 0.9$	
$D_J^*(2650)^0$	$D^{*+}\pi^{-}$	$2649.2 \pm 3.5 \pm 3.5$	$140.2 \pm 17.1 \pm 18.6$	$50.7 \pm 2.2 \pm 2.3$	24.5
$D^{*}(2760)^{0}$	$D^{*+}\pi^{-}$	$2761.1 \pm 5.1 \pm 6.5$	$74.4 \pm 3.4 \pm 37.0$	$14.4 \pm 1.7 \pm 1.7$	10.2
$D_J(2580)^0$	$D^{*+}\pi^{-}$	$2579.5 \pm 3.4 \pm 5.5$	$177.5 \pm 17.8 \pm 46.0$	$60.3 \pm 3.1 \pm 3.4$	18.8
$D_J(2740)^0$	$D^{*+}\pi^{-}$	$2737.0 \pm 3.5 \pm 11.2$	$73.2 \pm 13.4 \pm 25.0$	$7.7\pm1.1\pm1.2$	7.2
$D_J(3000)^0$	$D^{*+}\pi^{-}$	2971.8 ± 8.7	188.1 ± 44.8	9.5 ± 1.1	9.0
$D_2^*(2460)^0$	$D^+\pi^-$	$2460.4 \pm 0.1 \pm 0.1$	$45.6 \pm 0.4 \pm 1.1$	$675.0 \pm 9.0 \pm 1.3$	
$D_J^*(2760)^0$	$D^+\pi^-$	$2760.1 \pm 1.1 \pm 3.7$	$74.4 \pm 3.4 \pm 19.1$	$55.8 \pm 1.3 \pm 10.0$	17.3
$D_J^*(3000)^0$	$D^+\pi^-$	3008.1 ± 4.0	110.5 ± 11.5	17.6 ± 1.1	21.2
$D_2^*(2460)^+$	$D^0\pi^+$	$2463.1 \pm 0.2 \pm 0.6$	$48.6 \pm 1.3 \pm 1.9$	$341.6 \pm 22.0 \pm 2.0$	
$D_J^*(2760)^+$	$D^0\pi^+$	$2771.7 \pm 1.7 \pm 3.8$	$66.7 \pm 6.6 \pm 10.5$	$20.1 \pm 2.2 \pm 1.0$	18.8
$D_J^*(3000)^+$	$D^0\pi^+$	3008.1(fixed)	110.5 (fixed)	7.6 ± 1.2	6.6

18 April 2018

M. Pappagallo

MODELS FOR TETRA- AND PENTA-QUARKS

THE X(3872) STATE

Discovered in 2003 by the Belle collaboration in the $B \to KX(3872)$ decay where $X(3872) \to J/\psi \pi^+ \pi^-$

- $\circledast\,$ Mass is roughly equal to $m(D^0)+m(D^{*0})$
- \circledast Width is surprisingly narrow (< 1.2 MeV)
- $\circledast\,$ Large production rate in $p\bar{p}$ collisions

LHC experiments are largely contributing to shed light on the nature of the X(3872) state

- Determination of the quantum numbers J^{PC} = 1⁺⁺ [PRL110 222001 (2013)][PRD92 011102 (2015)]

Precise mass measurement [EPJC 72 (2012) 1972] [JHEP 06 (2013) 065]

 $E_B = m(D^0) + m(D^{*0}) - m(X(3872)) = 3 \pm 192 \,\mathrm{keV/c^2} \Longrightarrow$

Loosely bound in the molecule scenario

- > Production cross-section in pp collisions at $\sqrt{s} = 7$ TeV [EPJC 72 (2012) 1972,]
- > Search for new decay modes (e.g. $X(3872) \rightarrow \overline{pp}$) [arXiv: 1607.06446]

 $\frac{\mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X(3872) \to p\bar{p})}{\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to p\bar{p})} < 0.25 \times 10^{-2} @95\% \,\mathrm{CL}$

18 April 2018

EXCITED D_J STATES

[LHCb, JHEP 09 (2013) 145] [LHCb, JHEP 10 (2012) 151]

LHCb: Inclusive study of $D^+(\rightarrow K\pi\pi)\pi^-$, $D^0(\rightarrow K\pi)\pi^+$ and $D^{*+}\pi^-$. Several millions of D's in 1 fb⁻¹

Natural spin-parity states (J^P = 0⁺, 1⁻, 2⁺, 3⁻...) can decay to Dπ and D*π
 Unnatural spin-parity states (J^P = 0⁻, 1⁺, 2⁻, 3⁺...) can decay D*π

Dn spectrum: natural spin-parity states + cross-feed of all states (expect $0^+) \rightarrow D^* \pi$

D^{*}π spectrum: all states (expect 0^+). But different angular distribution (9 = Helicity angle)

- $\checkmark \propto \sin^2 \theta$ for natural spin-parity
- ✓ \propto 1+*h*cos²9 for unnatural spin-parity
- \checkmark Natural/Unnatural component can be enhanced with an ad hoc requirement on ϑ

18 April 2018

D⁰π⁺/D⁺π⁻ Mass Spectra

	Resonance	Final state	Mass~(MeV)	Width (MeV)	Yields $\times 10^{3}$	Signif (σ)
2 more natural states:	$D_1(2420)^0$	$D^{*+}\pi^{-}$	$2419.6\ {\pm}0.1{\pm}\ 0.7$	$35.2 \pm 0.4 \pm 0.9$	$210.2 \pm 1.9 \pm 0.7$	
	$D_2^*(2460)^0$	$D^{*+}\pi^-$	$2460.4 \pm 0.4 \pm 1.2$	$43.2 \pm 1.2 \pm 3.0$	$81.9 \pm 1.2 \pm 0.9$	
D *(3000) ⁰ D *(3000) ⁺	$D_J^*(2650)^0$	$D^{*+}\pi^-$	$2649.2\ {\pm}3.5{\pm}\ 3.5$	$140.2 \pm 17.1 \pm 18.6$	$50.7 \pm 2.2 \pm 2.3$	24.5
DJ (0000) , DJ (0000)	$D^{*}(2760)^{0}$	$D^{*+}\pi^-$	$2761.1\ {\pm}5.1{\pm}\ 6.5$	$74.4 \pm 3.4 \pm 37.0$	$14.4 \pm 1.7 \pm 1.7$	10.2
	$D_J(2580)^0$	$D^{*+}\pi^-$	$2579.5\ {\pm}3.4{\pm}\ 5.5$	$177.5 \pm 17.8 \pm 46.0$	$60.3 \pm 3.1 \pm 3.4$	18.8
	$D_J(2740)^0$	$D^{*+}\pi^-$	$2737.0 \pm 3.5 \pm 11.2$	$73.2 \pm 13.4 \pm 25.0$	$7.7 \pm 1.1 \pm 1.2$	7.2
	$D_J(3000)^0$	$D^{*+}\pi^-$	2971.8 ± 8.7	188.1 ± 44.8	9.5 ± 1.1	9.0
Study of D ^(*) π spectrum	$D_2^*(2460)^0$	$D^+\pi^-$	$2460.4\ {\pm}0.1{\pm}\ 0.1$	$45.6 \pm 0.4 \pm 1.1$	$675.0 \pm 9.0 \pm 1.3$	
from D do corre no od od to	$D_J^*(2760)^0$	$D^+\pi^-$	$2760.1\ {\pm}1.1{\pm}\ 3.7$	$74.4 \pm 3.4 \pm 19.1$	$55.8 \pm 1.3 \pm 10.0$	17.3
from b decays needed to	$D_J^*(3000)^0$	$D^+\pi^-$	3008.1 ± 4.0	110.5 ± 11.5	17.6 ± 1.1	21.2
establish spin-parity	$D_2^*(2460)^+$	$D^0\pi^+$	$2463.1 \pm 0.2 \pm 0.6$	$48.6 \pm 1.3 \pm 1.9$	$341.6 \pm 22.0 \pm 2.0$	
	$D_J^*(2760)^+$	$D^0\pi^+$	$2771.7 \pm 1.7 \pm 3.8$	$66.7 \pm 6.6 \pm 10.5$	$20.1 \pm 2.2 \pm 1.0$	18.8
	$D_J^*(3000)^+$	$D^0\pi^+$	3008.1(fixed)	110.5 (fixed)	7.6 ± 1.2	6.6

18 April 2018

SPECTROSCOPY OF D: INCLUSIVE ANALYSES**

[LHCb: JHEP 09 (2013) 145]

- Confirmation and observation of new excited states
- Precise measurement of masses and widths
- > "Naturalness" determined by the distribution of helicity angle in the $D^*\pi$
- ▷ New states can be interpreted as radial excitations (D(2S) and $D^*(2S)$) and orbital L=2 excitations ($D_2(1D)$ and $D_1^*(1D)$)
- > Studies in B decays required for determining spin-parity

18 April 2018

18 April 2018

P-WAVE STATES

[Phys. Rev. D91 (2015) 054034]

For each $j_{qq} > 0 \rightarrow \text{doublet } J^P = j_{qq} \pm 1/2$

7 excited L = 1 $\Omega_c \rightarrow 5\lambda$ -mode excited states

D- wave: 14 excited L = $2 \Omega_c \rightarrow 6\lambda$ -mode excited states

18 April 2018

The Inclusive Ξ_c^+ Sample

WHAT ARE THEY?

We have already seen the mass predictions but what about the widths?

$$\begin{split} S-\text{wave}: & \Gamma \sim 100 \text{ MeV} \times \left[\frac{E_K - m_K}{10 \text{ MeV}}\right]^{1/2},\\ P-\text{wave}: & \Gamma \sim 10 \text{ MeV} \times \left[\frac{E_K - m_K}{10 \text{ MeV}}\right]^{3/2},\\ D-\text{wave}: & \Gamma \sim 10 \text{ MeV} \times \left[\frac{E_K - m_K}{100 \text{ MeV}}\right]^{5/2}. \end{split}$$

[G. Chiladze, A. Falk: PRD 56 (1997) R6738]

Only D-wave transitions should return narrow states

WHAT ARE THEY?

18 April 2018

18 April 2018

18 April 2018

Most of the authors identified these states as the orbitally or radially excitations of the Ω^0_c baryon though they struggle to explain their narrowness and decay pattern

But there are some exceptions.....

18 April 2018

$B_{S1}(5830)^0$ AND $B_{S2}^*(5840)^0$

Two narrow peaks observed in the B⁺K⁻ by CDF
B_{s2}^{*} is the only narrow state expected. What is the nature of the second signal?

18 April 2018

LHCb GOING TO UPGRADE IN 2018

 ➤ Main limitation that prevents exploiting higher luminosity with the present detector is the Level-0 (hardware) trigger
✓ - Level-0 output rate < 1 MHz (readout rate) requires raising thresholds
➤ This is particularly problematic for hadronic final states

LHC era			HL-LHC era	
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2020-22)	Run 4 (2025-28)	Run 5+ (2030+)
3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	100 fb ⁻¹

LHCb upgrade Running at 2x10³³ cm⁻² s⁻¹ with full software trigger, running at 40 MHz and record 20 kHz

18 April 2018