Seminar Talk GSI, September 11, 2024

Three-body amplitudes for the analysis of lattice data and experiment

Michael Doering

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

With slide material from Y. Feng and M. Mai

Overview

Review 2B-lattice: [Briceno] Reviews 3B-lattice: [Hansen] [Mai] Review hadron resonances: [Mai]

Key publications Finite-Volume Unitary (FVU) approach:

- Three-body unitarity [Mai/JPAC]
- Three-body unitarity finite volume [Mai]
- a1 in finite volume & results from IQCD [Mai]

Talk outline:

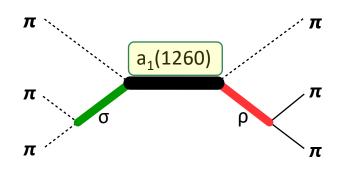
- 3-body unitarity
- a₁ in infinite volume
- $3\pi^+$, a_1 in finite volume
- Recent extensions: channel space & applications

Work supported by:

(Design: Y. Feng, based on TV series logo)

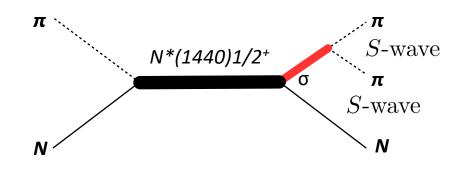
Three-body aspects: $\pi\pi N$ **vs.** $\pi\pi\pi$

Light mesons



- COMPASS @ CERN: $\pi_1(1600)$ discovery
- GlueX @ Jlab in search of hybrids and exotics,
 - Finite volume spectrum from lattice QCD: Lang (2014), Woss [HadronSpectrum] (2018) Hörz (2019), Culver (2020, 21,...), Fischer (2020), Hansen/HadSpec (2020),...

Light baryons



- Roper resonance is debated for ~50 years in experiment.
- 1st calculation w. meson-baryon operators on the lattice: Lang et al. (2017)

How Many Resonances Decay to 3 Particles?

[PDG]

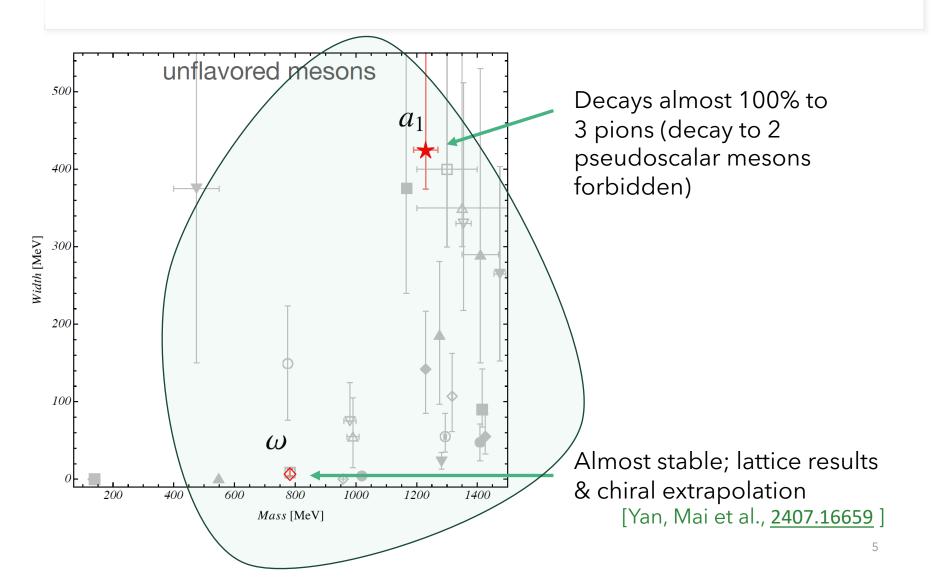
Just one sub-family of resonances (N*):

N Baryons (S = 0, I = 1/2)											
^p stable	PDF N	N(1900) 3/2+	>2 body doosys	PDF							
ⁿ "stable"	PDF	N(2000) 5/2+	≥3-body decays	PDF							
N(1440) 1/2+	PDF N	N(1990) 7/2+		PDF							
N(1520) 3/2-	PDF N	N(2040) 3/2+		PDF							
N(1535) 1/2-	PDF N	N(2060) 5/2-		PDF							
N(1650) 1/2-	PDF N	N(2100) 1/2+		PDF							
N(1675) 5/2-	PDF N	N(2120) 3/2-		PDF							
N(1680) 5/2+	PDF N	N(2190) 7/2-		PDF							
N(1700) 3/2-	PDF N	N(2220) 9/2+	≥ 3-body decays	PDF							
N(1710) 1/2+	PDF N	N(2250) 9/2-	, , , , , , , , , , , , , , , , , , ,	PDF							
N(1720) 3/2+	PDF N	N(2300) 1/2+		PDF							
N(1860) 5/2+	PDF N	N(2570) 5/2-		PDF							
N(1875) 3/2-	PDF N	N(2600) 11/2-		PDF							
N(1880) 1/2+	PDF N	N(2700) 13/2+		PDF							
N(1895) 1/2-	PDF N	N(3000 Regior	n)	PCf							

Number of states With only twobody decays in this sub-family:

N*

>2-body meson decays



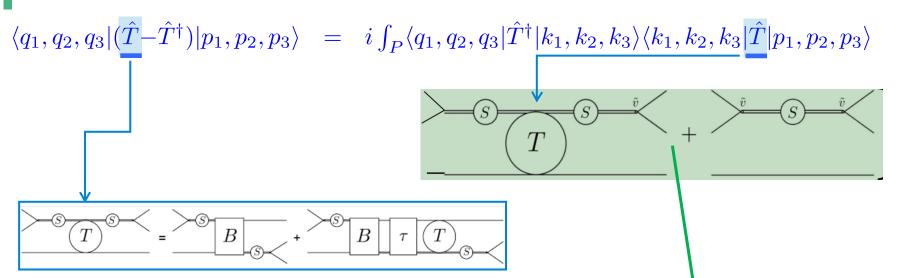
Three-body unitarity with isobars *

 $\begin{aligned} \langle q_1, q_2, q_3 | (\hat{T} - \hat{T}^{\dagger}) | p_1, p_2, p_3 \rangle &= i \int_P \langle q_1, q_2, q_3 | \hat{T}^{\dagger} | k_1, k_2, k_3 \rangle \langle k_1, k_2, k_3 | \hat{T} | p_1, p_2, p_3 \rangle \\ & \times \prod_{\ell=1}^3 \left[\frac{\mathrm{d}^4 k_\ell}{(2\pi)^4} (2\pi) \delta^+ (k_\ell^2 - m^2) \right] (2\pi)^4 \delta^4 \left(P - \sum_{\ell=1}^3 k_\ell \right) \end{aligned}$

delta function sets all intermediate particles on-shell

Idea: To construct a 3B amplitude, start directly from unitarity (based on ideas of 60's); match a general amplitude to it

* "Isobar" stands for two-body sub-amplitude which can be resonant or not; can be matched to CHPT expansion to one loop if desired. Isobars are re-parametrizations of full 2-body amplitudes [Bedaque] [Hammer]

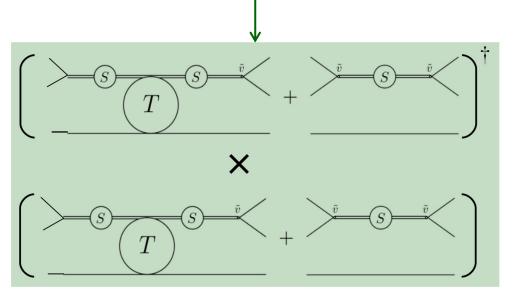


General Bethe-Salpeter Ansatz for the isobar-spectator interaction

 \rightarrow **B & t** are unknown functions to be obtained by matching To right-hand side.

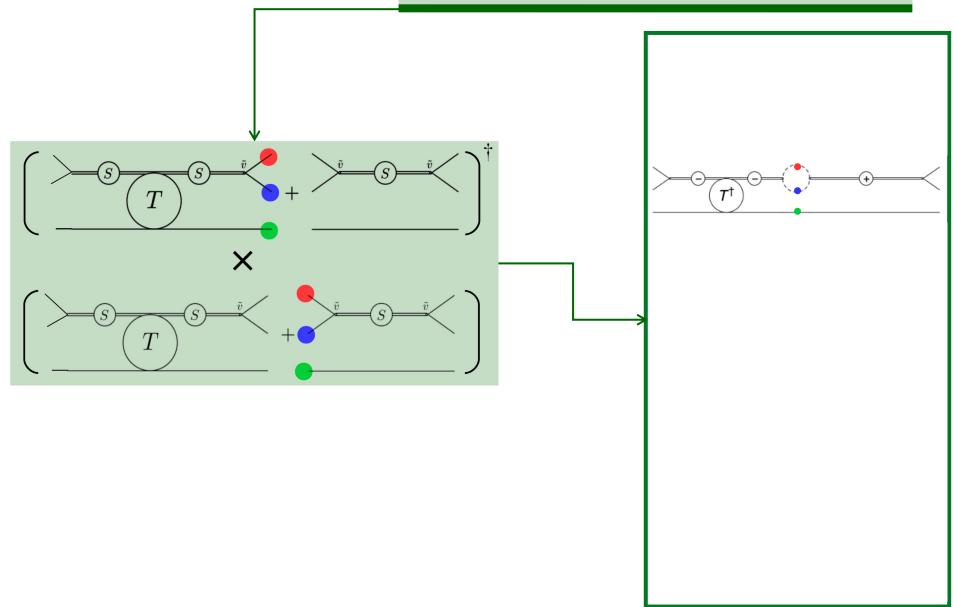
The three-pion state is populated by first combining two states to an "isobar", and then adding the third "spectator"

$\langle q_1, q_2, q_3 | (\hat{T} - \hat{T}^{\dagger}) | p_1, p_2, p_3 \rangle \ = \ i \int_P \langle q_1, q_2, q_3 | \hat{T}^{\dagger} | k_1, k_2, k_3 \rangle \langle k_1, k_2, k_3 | \hat{T} | p_1, p_2, p_3 \rangle$

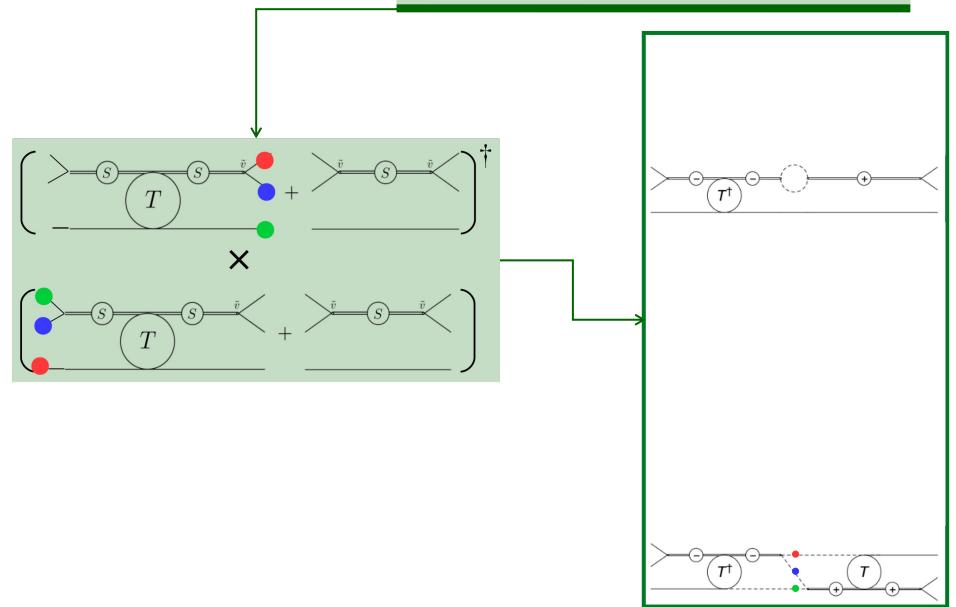


General connected-disconnected structure

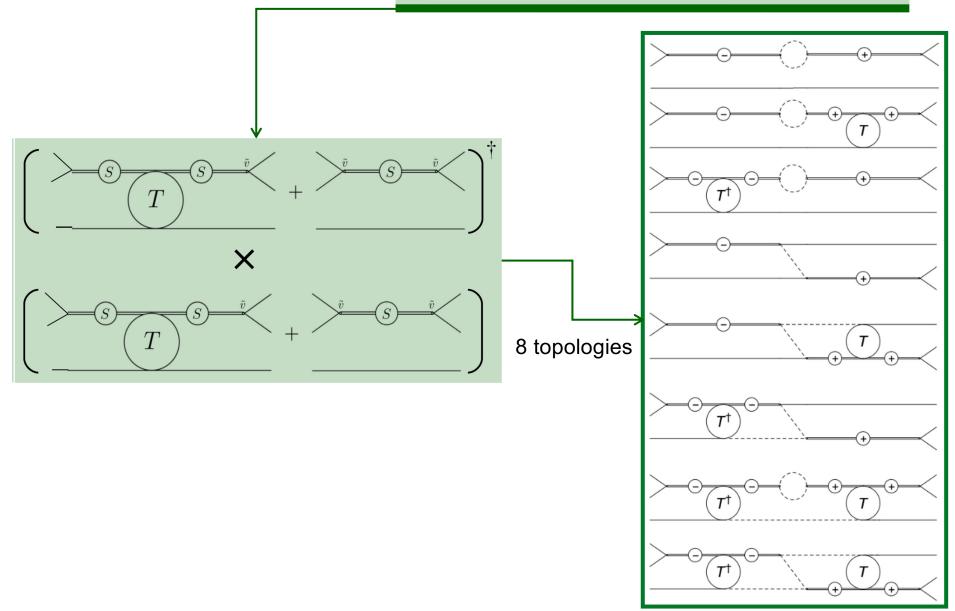
$\begin{array}{lll} \langle q_1, q_2, q_3 | (\hat{T} - \hat{T}^{\dagger}) | p_1, p_2, p_3 \rangle & = & i \int_P \langle q_1, q_2, q_3 | \hat{T}^{\dagger} | k_1, k_2, k_3 \rangle \langle k_1, k_2, k_3 | \hat{T} | p_1, p_2, p_3 \rangle \end{array}$



$\langle q_1, q_2, q_3 | (\hat{T} - \hat{T}^{\dagger}) | p_1, p_2, p_3 \rangle \ = \ i \int_P \langle q_1, q_2, q_3 | \hat{T}^{\dagger} | k_1, k_2, k_3 \rangle \langle k_1, k_2, k_3 | \hat{T} | p_1, p_2, p_3 \rangle$



 $\begin{array}{lll} \langle q_1, q_2, q_3 | (\hat{T} - \hat{T}^{\dagger}) | p_1, p_2, p_3 \rangle & = & i \int_P \langle q_1, q_2, q_3 | \hat{T}^{\dagger} | k_1, k_2, k_3 \rangle \langle k_1, k_2, k_3 | \hat{T} | p_1, p_2, p_3 \rangle \end{array}$

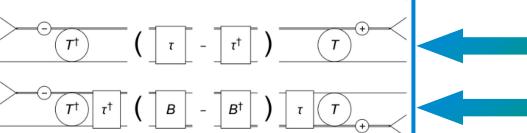


$\langle q_1, q_2, q_3 | (\hat{T} - \hat{T}^{\dagger}) | p_1, p_2, p_3 \rangle = i \int_P \langle q_1, q_2, q_3 | \hat{T}^{\dagger} | k_1, k_2, k_3 \rangle \langle k_1, k_2, k_3 | \hat{T} | p_1, p_2, p_3 \rangle$ General BSE (T=B+BτT) Т Т T^{\dagger} T^{\dagger} B^{\dagger} В Τ В B τ Т | B[†] | T^{\dagger} τ^{\dagger} T^{\dagger} В

 T^{\dagger}

 T^{\dagger}

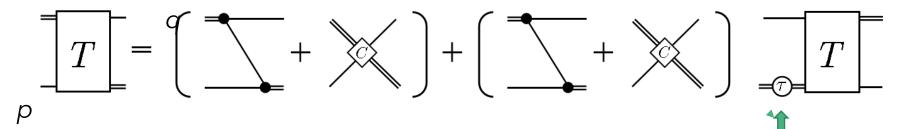
т



Resulting scattering equation

• 4-dim BSE becomes 3-dim by putting spectator on-shell (choice)

 $\left\langle q \left| \left. T(s) \right. \right| p \right\rangle = \left\langle q \right| \left. B(s) \right. \left| p \right\rangle + \left\langle q \right| C(s) \left. \left| p \right\rangle + \int \frac{d^4k}{(2\pi)^4} \left\langle q \right| \left(B(s) + C(s) \right) \left| k \right\rangle \tau(\sigma(k)) \left\langle k \right| T(s) \left| p \right\rangle \right.$



Exchange:

- Complex
- Required by unitarity

Contact term:

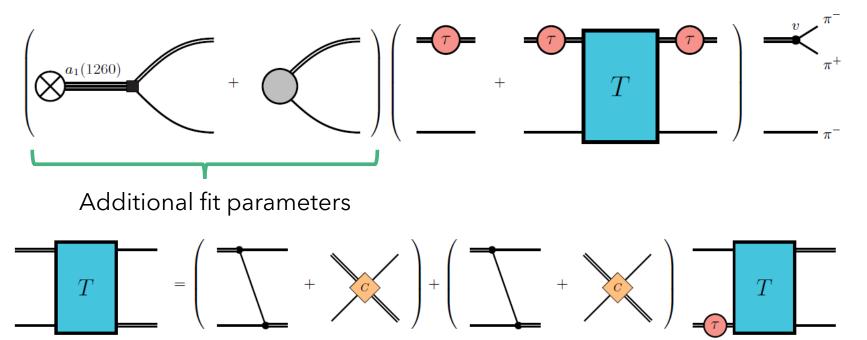
- Does not destroy unitarity
- <u>Free parametrization:</u> <u>fit to data</u>

Isobarspectator Green's functions

The a₁(1260) and its Dalitz plots

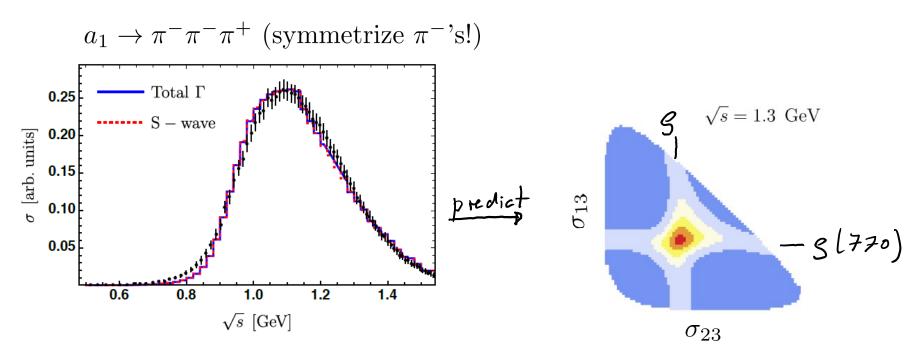
<u>[Sadasivan 2020]</u>

• Disconnected and connected decays for three-body untarity

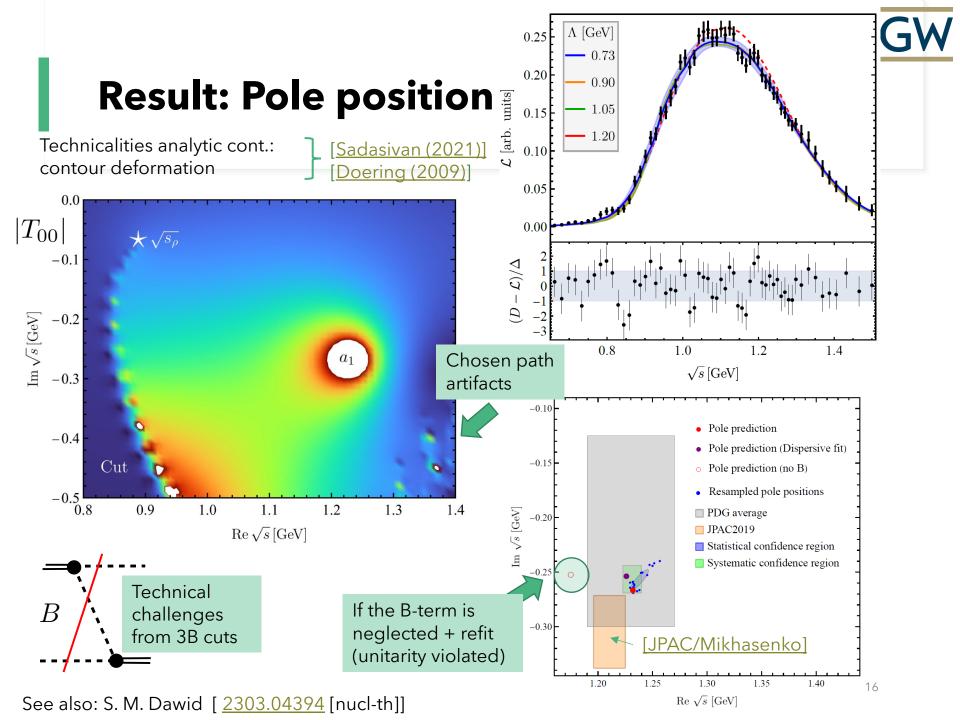


Fitting the lineshape & predicting Dalitz plots [Sadasivan 2020]

- One can have $\pi \rho$ in S- and D-wave coupled channels
- Fit contact terms to the lineshape from Experiment (ALEPH)



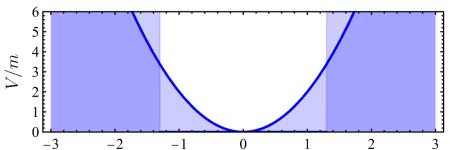
Where is the resonance pole in s? Pole positions & residues are reaction¹⁵ independent characteristics of resonance mass, width, and branching ratios

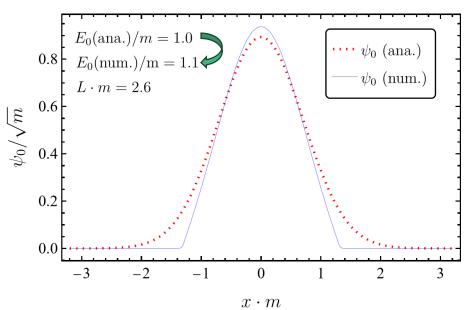


Finite-Volume Effects

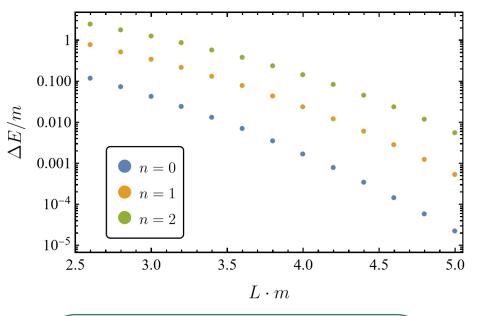
A wave function is squeezed into a finite volume

[https://blogs.gwu.edu/doring/]



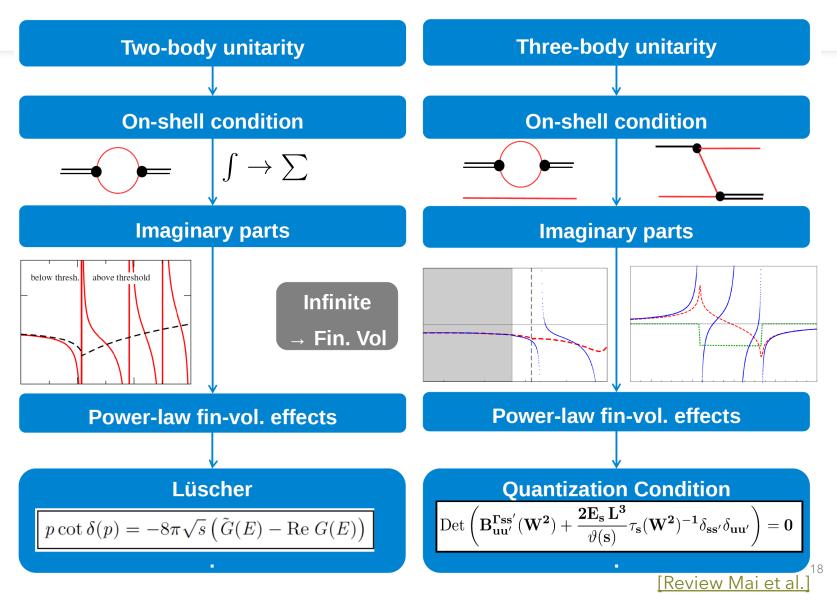


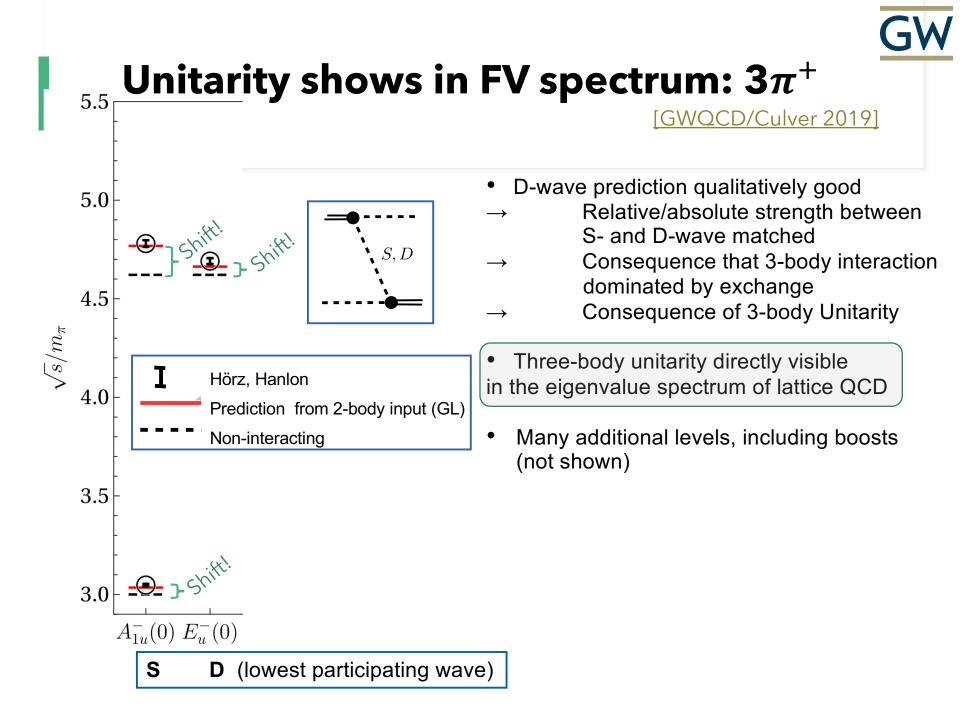
Distortion of the energy spectrum as function of box size



Periodic Boundary Conditions $\Psi(\vec{x}) \stackrel{!}{=} \Psi(\vec{x} + \hat{\mathbf{e}}_i L) = \exp(i L q_i) \Psi(\vec{x})$ $q_i = \frac{2\pi}{L} n_i, \quad n_i \in \mathbb{Z}$ only discrete momenta allowed

Lattice QCD: Finite-volume unitarity (FVU)

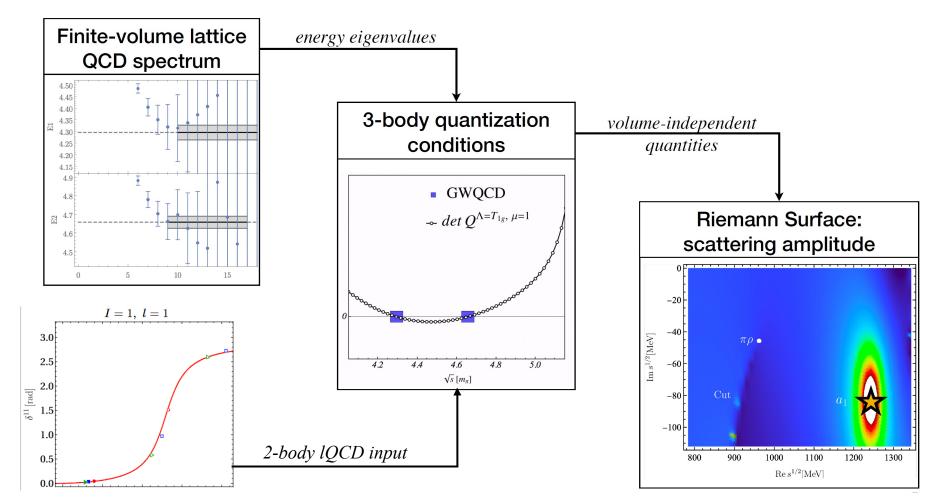




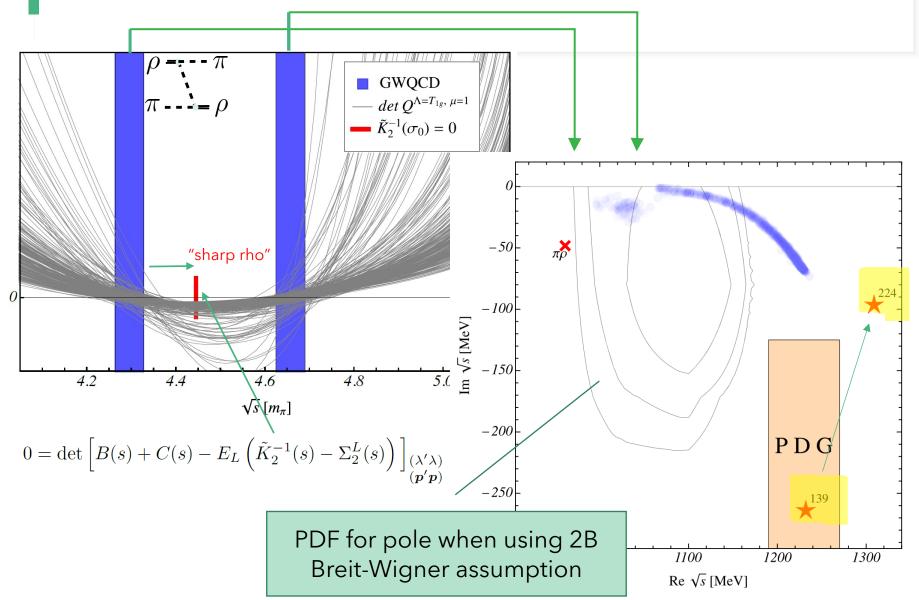
Extraction of $a_1(1260)$ from IQCD

[Mai/MD/GWQCD, PRL 2021]

• First-ever three-body resonance from 1st principles (with explicit three-body dynamics).



Results - overview

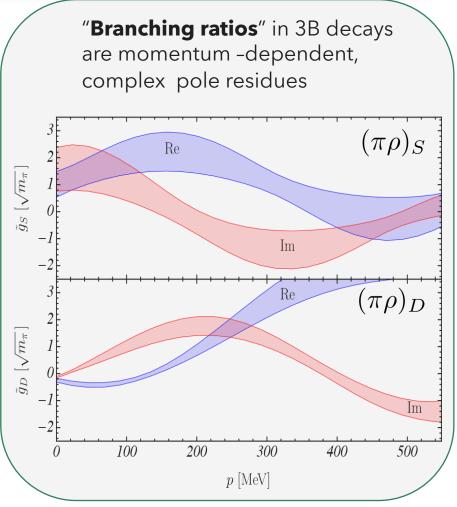


Branching ratios

• Calculate the residue at the pole:

 $\operatorname{Res}(T^c_{\ell'\ell}(\sqrt{s})) = \tilde{g}_{\ell'}\tilde{g}_{\ell}$

- This result is not as reliable as pole position/existence of a₁
- More energy eigenvalues needed to better pin down the decay channels

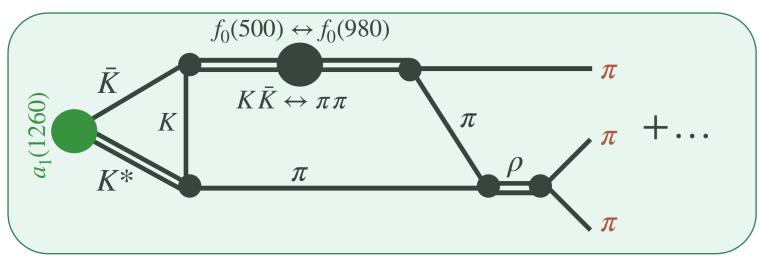


Coupled-channel, unitary amplitudes

[Feng, Gil, Molina, Mai, Shastry, Szczepaniak, MD, PRD '24]

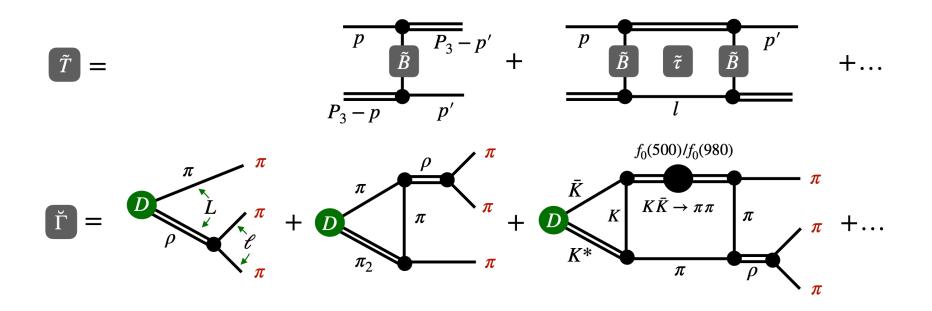
- Coupled-channel, coupled-partial wave amplitudes
- Unitarity manifest
- In-flight transitions of isobars: $\pi\pi \leftrightarrow K\bar{K}$
- All isospins: I = 0, 1/2, 1, 3/2, 2

• Example:



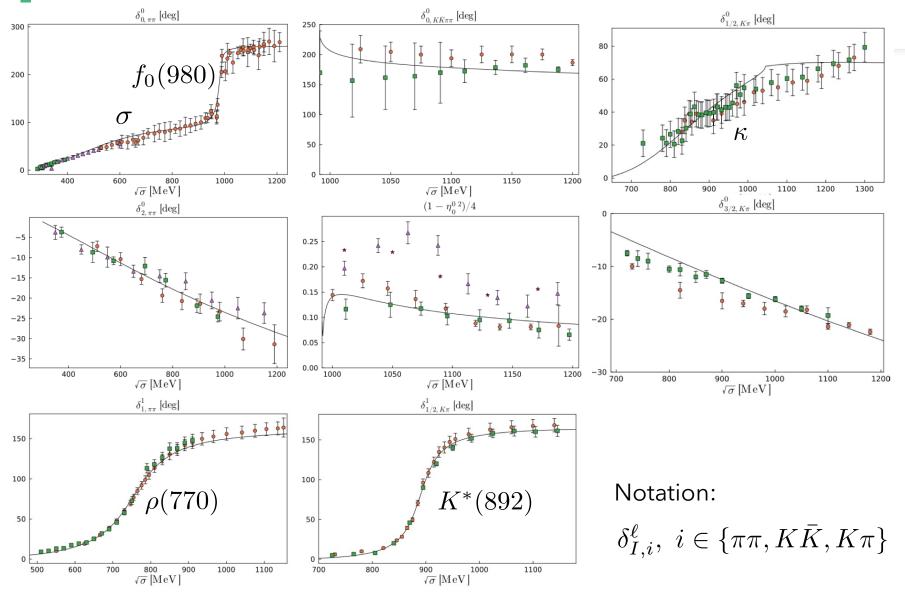
Channel space

Isobar (S_I, I_I)	(1, 1)	(1, 1/2)		(0, 0)	(0,2)	(0, 1/2)	(0, 3/2)
HB basis (11 Ch.)	$\pi ho_{\lambda=\pm 1,0}$	$KK^*_{\lambda=\pm 1,0}$	$\pi\sigma$	$\pi(Kar{K})_S$	$\pi\pi_2$	$K\kappa$	$K(\pi K)_S$
JLS basis (9 Ch.)	$(\pi\rho)_S (\pi\rho)_D$	$(KK^*)_S (KK^*)_D$	$(\pi\sigma)_P$	$(\pi(Kar{K})_S)_P$	$(\pi\pi_2)_S$	$(K\kappa)_S$	$(K(\pi K)_S)_P$



 Scattering matrix dimensions: Spectator momentum ⊗ JLS channels ⊗ isobar channels

Two-body input



How to solve the scattering equation

$$\tilde{T}_{ji}(s,p',p) = \tilde{B}_{ji}(s,p',p) + \tilde{C}_{ji}(s,p',p) + \int_{0}^{\Lambda} \frac{\mathrm{d}l\,l^2}{(2\pi)^3\,2E_l} \left(\tilde{B}_{jk}(s,p',l) + \tilde{C}_{jk}(s,p',l)\right)\,\tilde{\tau}_k(\sigma_l)\,\tilde{T}_{kj}(s,l,p)$$

Three-body cuts

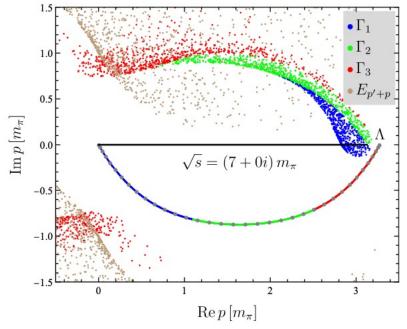
p'

$$\tilde{B}_{ji}(s, p', p) = \frac{(\tilde{I}_F)_{ji} v_j^*(p, P - p - p') v_i(p', P - p - p')}{2E_{p'+p}(\sqrt{s} - E_p - E_{p'} - E_{p'+p}) + i\epsilon}$$

- Angle, energy dependent
- Depend also on p' and p

 \mathcal{D}

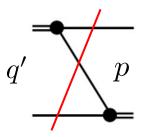
 Solve LSE for complex momenta on a deformed contour

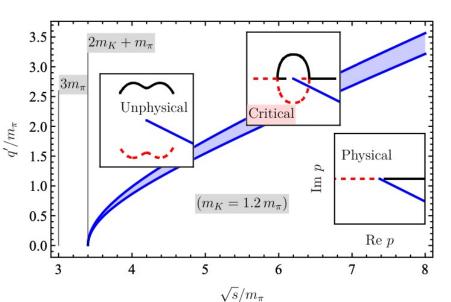


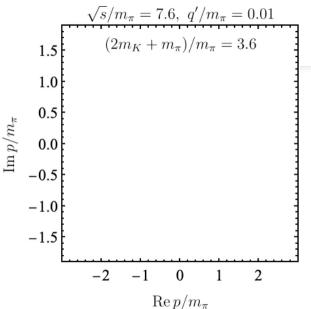
27

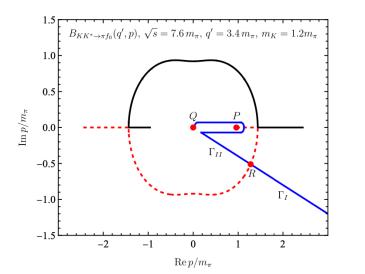
How to get the solution for real, physical momenta $\sqrt{s/m_{\pi} = 7.6, q'/m_{\pi} = 0.01}$

• No solution for real momenta in "critical region"









How to get the solution for real, physical momenta

Solution 2: Direct inversion [Ziegelmann et al.]

Production
$$ilde{\Gamma}_j^T(s,q') = D_j(s,q') + \int_0^{\Lambda} \frac{dq \, q^2}{(2\pi)^3 2E_q} \, \tilde{B}ji(s,q',q) \, \tilde{\tau}_i(\sigma(q)) \, \tilde{\Gamma}_i^T(s,q)$$

amplitude

Ansatz

$$\tilde{\Gamma}^{T}(q) \approx \sum_{i=1}^{N} \tilde{\Gamma}^{T}(q_{i}) H_{i}(q)$$
 with Lagrange polynomials $H_{i}(q) = \frac{\prod_{j \neq i}^{N} (q - q_{j})}{\prod_{j \neq i}^{N} (q_{i} - q_{j})}$

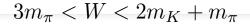
Makes integral equation a $\tilde{\Gamma}^T(q_j) = D(q_j) + A_{ji}\tilde{\Gamma}^T(q_i)$ matrix equation

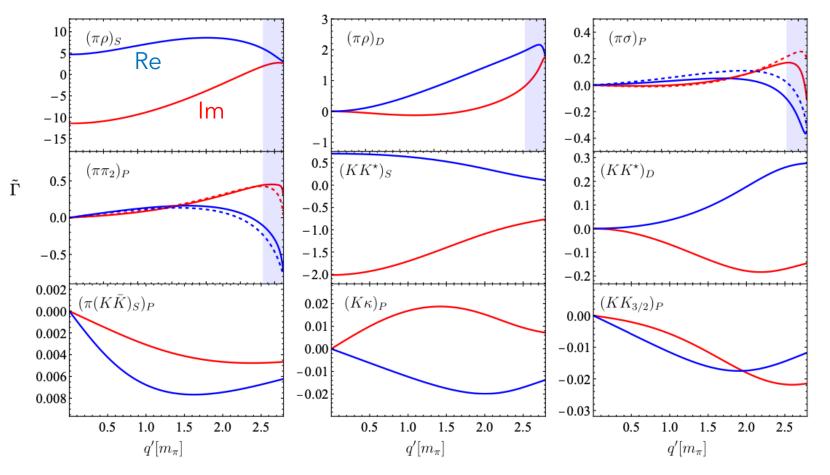
With singular integrals
$$A_{ji} = \int_0^\Lambda \frac{dq \, q^2}{(2\pi)^3 2E_q} \, \tilde{B}(q_j, q) \, \tilde{\tau}(\sigma(q)) \, H_i(q)$$

... for which many established algorithms exist

Production amplitude 9-channel model

(Only the (non-trivial) rescattering piece)

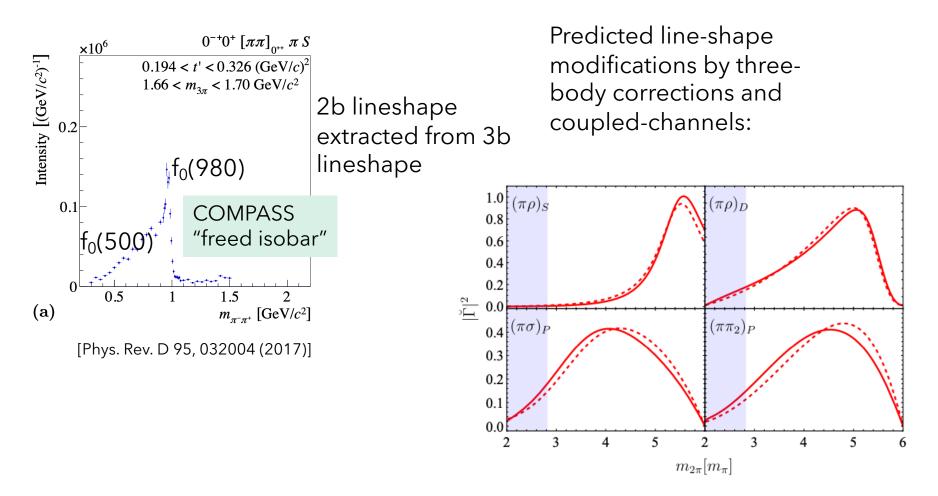




Dashed lines: with $\pi \rho$ switched off (influence of coupled channels)

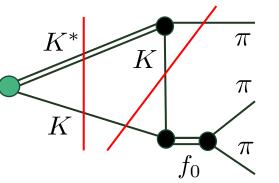
Future applications: Line-shape modifications

Lineshapes in the analysis of experimental data (COMPASS)



Triangle singularities (TS)

• Triangle singularities are three-body singularities happening in the physical region, while isobar & spectator are also "on-shell"



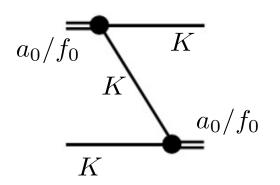
Notation: K can also stand for \overline{K}

- How does re-scattering affect triangle singularities?
 - Rather small effects [Sakthivasan, Mai, Rusetsky, M.D., arXiV: 2407.17696]
- Quantitative results under way: Unified description of $a_1(1260)$ and $a_1(1420)$ as resonance + TS

Triangle singularities at thresholds (1)

[Khemchandani, Martinez, MD, in progress]

• The K(1460) resonance from Kf $_0(980)$ and Ka $_0(980)$ channels



• Molecular state? [Albaldejo et al., 2010; Martinez et al., 2011]

 At zero a₀, f₀ widths, "molecular "bound state with E_B=0.5MeV is found "dynamically generated" [Zang, Hanhart et al., EPJA 2022]

Preliminary findings: $E_B=0.5$ MeV confirmed. Once isobars have width, an interplay of real thresholds, complex thresholds, triangle singularity, and a molecular state arise.

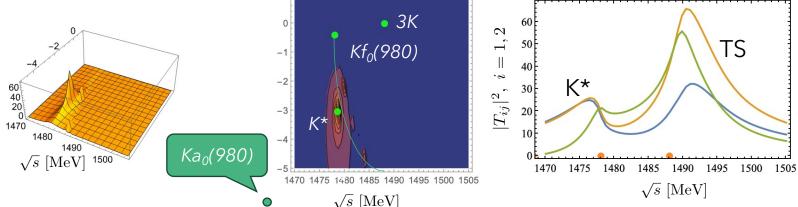
 $m_{a_0} \approx m_{f_0} \approx 2m_K$

$$\begin{array}{c|c} a_0/f_0 & K & K \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Triangle singularities at thresholds (2)

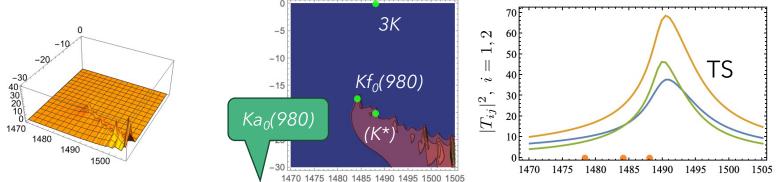
[Khemchandani, Martinez, MD, prelim]

• Isobars with almost zero width

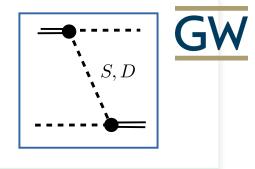


• Isobars with full width: Only the TS survives; K* pole disappears

 $(x_{f_0}, x_{a_0}) = (1., 1.), \sqrt{s} (K^*) = 1488.0 - 20.1 \text{ iMeV}; \sqrt{s} (f_0) = 988.1 - 17.4 \text{ i MeV}; \sqrt{s} (a_0) = 982.3 - 53.6 \text{ i MeV};$ (



Summary



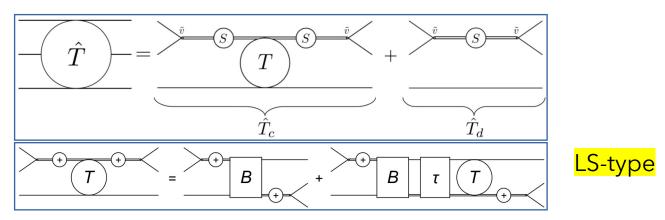
- Lattice QCD progress in determining the explicit dynamics of three-body systems:
 - Three pions at maximal isospin well understood (FVU, RFT, Peng Guo,...)
 - First determination of existence and properties of a three-body resonance
 the a₁(1260) in coupled channels by FVU, recently: ω
- **Outlook:** More (isospin) channels; other physical systems
 - Channel extension for strangeness with many applications
 - Data analysis (GlueX, Compass, Amber, ?)
 - Dynamical generation of resonances, kinematic effects (triangles), complex branch points: Unified treatment seems possible.
 - Other ideas?

THANK YOU VERY MUCH FOR HOSPITALITY, INTEREST & ATTENTION

Spare slides

Scattering amplitude

 $3 \rightarrow 3$ scattering amplitude is a 3-dimensional integral equation



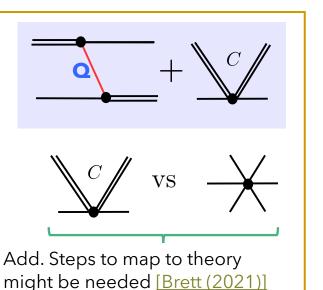
- Imaginary parts of **B**, τ⁻¹ are fixed by **unitarity/matching**
- B, S are determined **consistently** through 8 different relations

Matching
$$\rightarrow$$
 Disc $B(u) = 2\pi i \lambda^2 \frac{\delta \left(E_Q - \sqrt{m^2 + \mathbf{Q}^2} \right)}{2\sqrt{m^2 + \mathbf{Q}^2}}$

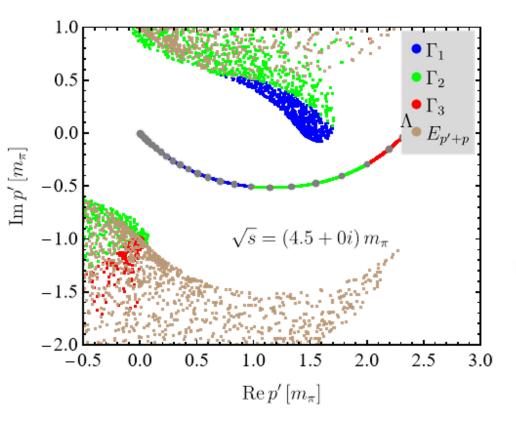
• un-subtracted dispersion relation

$$\langle q|B(s)|p\rangle = -\frac{\lambda^2}{2\sqrt{m^2 + \mathbf{Q}^2} \left(E_Q - \sqrt{m^2 + \mathbf{Q}^2} + i\epsilon\right)} + C$$

- one- π exchange in TOPT \rightarrow *RESULT, NOT INPUT* !
- One <u>can</u> map to field theory but does not have to. Result is a-priori dispersive.



Details: Solving the scattering equation at complex momenta



$$f(\mathbf{p}', \mathbf{p}) = \frac{1}{\sqrt{s} - E_p - E_{p'} - E_{p+p'} + i\epsilon}$$

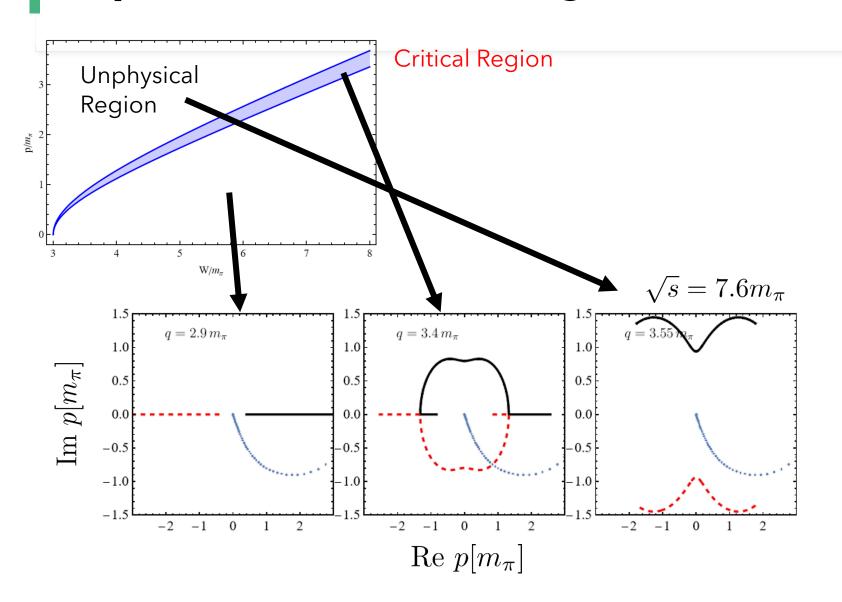
 Avoid vanishing denominator at

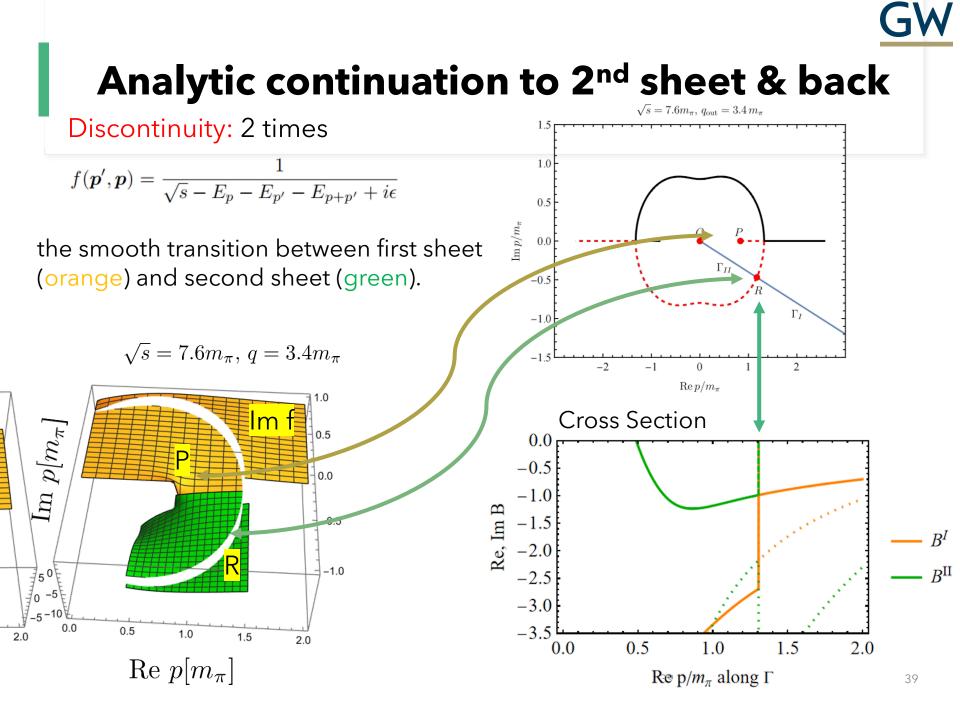
$$p'_{\pm} = \frac{px(p^2 - \alpha^2) \pm \alpha \sqrt{(\beta + p^2 (x^2 - 1))^2 - 4m_{\pi}^2 \beta}}{2\beta},$$

$$\alpha(p) = \sqrt{s} - E_p, \quad \beta(p, x) = \alpha^2(p) - p^2 x^2. \quad (23)$$

38

Spectator momentum regions





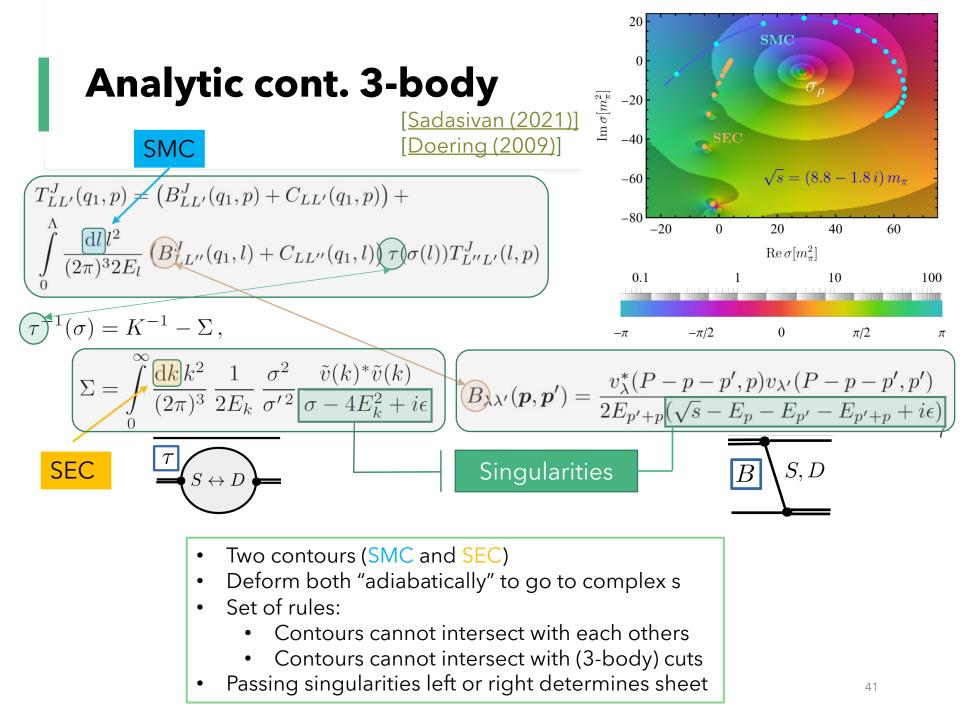
Partial-wave decomposition

• Plane-wave basis

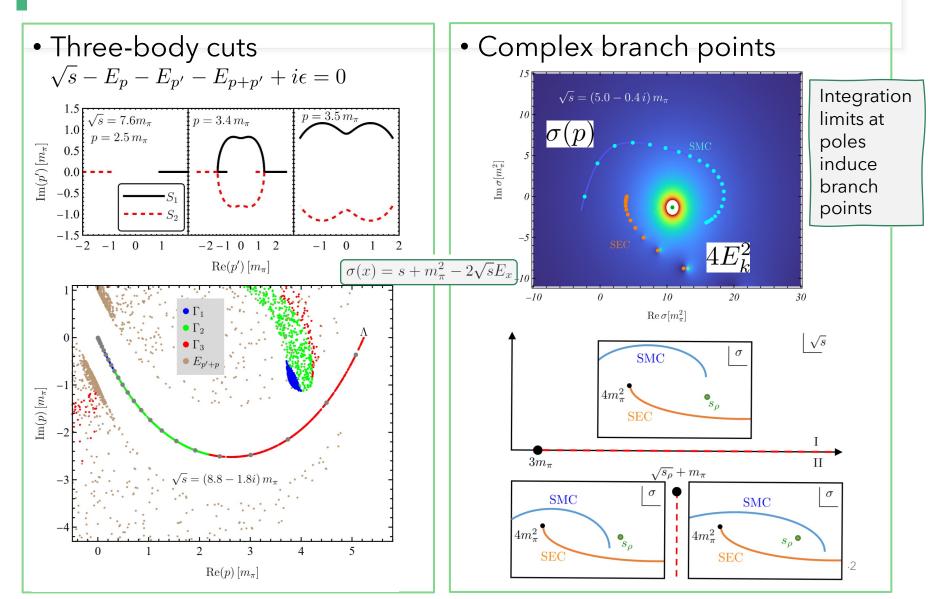
$$T_{\lambda'\lambda}(p,q_{1}) = (B_{\lambda'\lambda}(p,q_{1}) + C) + \sum_{\lambda''} \int \frac{d^{3}l}{(2\pi)^{3}2E_{l}} (B_{\lambda'\lambda''}(p,l) + C) \tau(\sigma(l))T_{\lambda''\lambda}(l,q_{1})$$

$$B_{\lambda\lambda'}^{J}(q_{1},p) = 2\pi \int_{-1}^{+1} dx \, d_{\lambda\lambda'}^{J}(x)B_{\lambda\lambda'}(q_{1},p) \quad B_{LL'}^{J}(q_{1},p) = U_{L\lambda}B_{\lambda\lambda'}^{J}(q_{1},p)U_{\lambda'L'}$$
• JLS basis:

$$T_{LL'}^{J}(q_{1},p) = \left(B_{LL'}^{J}(q_{1},p) + C_{LL'}(q_{1},p)\right) + \int_{0}^{\Lambda} \frac{dl \, l^{2}}{(2\pi)^{3}2E_{l}} \left(B_{LL''}^{J}(q_{1},l) + C_{LL''}(q_{1},l)\right) \tau(\sigma(l))T_{L''L'}^{J}(l,p)$$



Analytic continuation 3-body (contd.)



Heatherington and Schick method

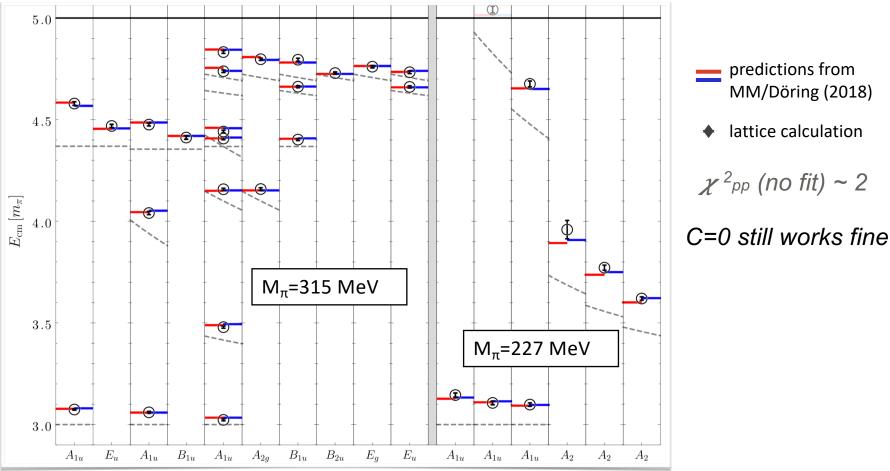
B defined as smooth transition from 2nd to 1st sheet for more compact notation

Production amplitude



GWUQCD data

- More recent data is available
 - very dense spectrum from elongated boxes
 - different pion masses (chiral extrapolations?)



Plane-wave implementation of the C-term

- **Step 1**: JM-basis → Helicity basis
- Step 2: partial-wave basis \rightarrow Plane-wave basis
- **Step 3**: C (and B, and 3B propagator) from plane-wave basis to irreps by suitable rotations

$$\begin{aligned} \mathcal{A}_{\lambda'\lambda}(s, \boldsymbol{p}', \boldsymbol{p}) &= \sum_{M=-J}^{J} \frac{2J+1}{4\pi} \,\mathfrak{D}_{M\lambda'}^{J*}(\phi_{\boldsymbol{p}'}, \theta_{\boldsymbol{p}'}, 0) \,\mathcal{A}_{\lambda'\lambda}^{J}(s, \boldsymbol{p}', \boldsymbol{p}) \,\mathfrak{D}_{M\lambda}^{J}(\phi_{\boldsymbol{p}}, \theta_{\boldsymbol{p}}, 0) \,, \qquad \text{Step 2} \\ \mathcal{A}_{\lambda'\lambda}^{J}(s, \boldsymbol{p}', \boldsymbol{p}) &= U_{\lambda'\ell'} \mathcal{A}_{\ell'\ell}(s, \boldsymbol{p}', \boldsymbol{p}) U_{\ell\lambda} \,, \\ U_{\ell\lambda} &:= \sqrt{\frac{2\ell+1}{2J+1}} (\ell 01\lambda | J\lambda) (1\lambda 00 | 1\lambda)) = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{6}} \,, \end{pmatrix} \,, \qquad \qquad \text{Step 1} \end{aligned}$$

4 different fits to 2 energy eigenvalues

• Fitted isobar-spectator interaction (case 1, 2) for $|p| \le 2\pi/L|(1,1,0)| \approx 2.69 \ m_{\pi}$

$$C_{\ell'\ell}(s, p', p) = \sum_{i=-1}^{n} c_{\ell'\ell}^{(i)}(p', p)(s - m_{a_1}^2)^i$$

• a_1 can be generated as pole even though no built-in singularity

	Non-zero coefficients	No of fit parameters	<i>x</i> ²
$\overline{\mathcal{A}}$	c ₀₀ ⁰ (no built-in pole)	1	9
\checkmark	c ₀₀ ⁰ , c ₀₀ ¹ (no built-in pole)	2	0.15
	g ₀ , g ₂ , m _{a1} , c	4	10-7

$$C_{\ell'\ell}(s, \mathbf{p}', \mathbf{p}) = g_{\ell'} \left(\frac{|\mathbf{p}'|}{m_{\pi}}\right)^{\ell'} \frac{m_{\pi}^2}{s - m_{a_1}^2} g_{\ell} \left(\frac{|\mathbf{p}|}{m_{\pi}}\right)^{\ell} + c \,\delta_{\ell'0} \delta_{\ell 0}$$

• In these cases, there is a built-in singularity, leading to resonance poles

Three kaons at maximal isospin

[Alexandru 2020]

- First study of three kaons from lattice QCD with chiral amplitudes
- Other groups have improved on this in the meantime:
 - Max. isospin, non-identical masses ($\pi^+\pi^+K^+, \pi^+K^+K^+$)

[<u>Blanton 2021</u>]

- Pions and kaons at maximal isospin with unprecedented accuracy and no. of levels ($\pi^+\pi^+\pi^+$, $K^+K^+K^+$) [Blanton 2021]
- Two mass-degenerate light quarks (u,d); valence strange quark
- nHYP-smeared clover action
- quark propagation is treated using the LapH method with optimized inverters
- Lattice spacing determined from Wilson flow parameter w_0