Baryons at **BESIII**

LIU Beijiang Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS)

June 7, 2017 GSI

Introduction

• Λ_c physics at BESIII

Baryon spectroscopy at BESIII

Beijing Electron Positron Collider (BEPCII)

Double ring, Large Crossing angle

BSRF

BESIII

detector

IHEP, Beijing

Beam-Energy 1.0-2.3GeV Energy Spread 5.16×10⁻⁴ Design luminosity 1x10³³/cm²/s @ ψ(3770)

Linac

2004: start BEPCII construction 2008: test run of BEPCII 2009-now: BECPII/BESIII data taking

2016/04: Reach designed luminosity

Beijing Spectroscopy (BESIII) Detector

Features of the BEPC Energy Region

- Rich of resonances: charmonia and charmed mesons
- Threshold characteristics (pairs of τ, D, D_s, ...)
- Transition between smooth and resonances, perturbative and non-perturbative QCD
- Energy location of the gluonic excitations and multi-quark states

Physics at **BESIII**

Charmonium physics:

- spectroscopy
- transitions and decays

Light hadron physics:

- meson & baryon spectroscopy

- glueball, hybrid, multiquark

- two-photon physics

- e.m. form factors of nucleon

Open charm physics:

- charmed mesons

- decay constant, form factors
- CKM matrix: Vcd, Vcs
- D⁰-D⁰bar mixing and CP violation
- rare/forbidden decays

- Λ_c

Tau and QCD physics

New physics

Data collected at BESIII

Λ_c^+ PHYSICS AT BESIII

Quark Model picture

 Λ_c^+ : a heavy quark (c) with a unexcited spin-zero diquark (u-d)

 $\frac{\text{Charmed meson}}{m_d \ll m_c \rightarrow \text{quark + heavy quark}} (\text{Q})$

Strange baryons (Λ [uds]) m_u, m_d \approx m_s \rightarrow (qqq) uniform

 $\begin{array}{l} \underline{\textbf{Charmed baryon}} \quad (\Lambda_c[udc]) \\ m_u, m_d << m_c \rightarrow \underline{\textbf{diquark + quark}} \\ (qq) \qquad (Q) \end{array}$

Heavy Quark Effective Theory :

- diquark correlation is enhanced by weak Color Magnetic Interaction with a heavy quark
- More reliable prediction of heavy-light quark transition without dealing with light degrees of freedom that have net spin or isospin.

Λ_c^+ may provide complementary powerful test on internal dynamics to charmed meson does

Cornerstone of charmed baryon Spectroscopy

- The lightest charmed baryon
- Most of the charmed baryons
 will eventually decay to Λ_c^+
- The Λ_c⁺ is one of important tagging hadrons in c-quark counting in the productions at high energies and bottom baryon decays
- $\Box \quad B(\Lambda_c^+ \to pK^-\pi^+): \text{ dominant} \\ \text{ error for } V_{ub} \text{ via baryon decay} \\ \end{array}$

The Λ_c^+ Decays

Λ_c Measurements [PDG2015]

Δ	B/B

A DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	(мАВ/В			
Hadronic modes wit	—					
pK ⁰	(3.21± 0.30) %		9.3%			
$pK^{-}\pi^{+}$	(6.84 + 0.32)%		5.8%			
$p\overline{K}^{*}(892)^{0}$	al (2.13± 0.30) %		14.1%			
$\Delta(1232)^{++}K^{-}$	$(1.18\pm0.27)\%$		22.9%			
$\Lambda(1520)\pi^+$	a] $(2.4 \pm 0.6)\%$		25.0%			
$pK^{-}\pi^{+}$ nonresonant	(3.8 ± 0.4)%		10.5%			
$p\overline{K}^0\pi^0$	$(4.5 \pm 0.6)\%$		13.3%			
$p\overline{K}^0\eta$	$(1.7 \pm 0.4)\%$		23.5%			
$p\overline{K}^0\pi^+\pi^-$	$(3.5 \pm 0.4)\%$		11.4%			
$pK^{-}\pi^{+}\pi^{0}$	$(4.6 \pm 0.8)\%$		13.0%			
$pK^{*}(892)^{-}\pi^{+}$	q] (1.5 ± 0.5)%		33.3%			
$p(K^-\pi^+)_{\text{nonresonant}}\pi^0$	(5.0 ± 0.9)%		18.0%			
$\Delta(1232)\overline{K}^{*}(892)$	seen					
$pK^{-}\pi^{+}\pi^{+}\pi^{-}$	(1.5 ± 1.0)×	10-3	66.7%			
$pK^{-}\pi^{+}\pi^{0}\pi^{0}$	(1.1 ± 0.5) %		45.4%			
Hadronic modes wi	th a p: S = 0 final	states				
$p\pi^{+}\pi^{-}$	$(4.7 \pm 2.5) \times$	10-3	45.4%			
p f ₀ (980)	q] (3.8 ± 2.5)×	10-3	53.2%			
$p\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	$(2.5 \pm 1.6) \times$	10-3	64.0%			
pK^+K^-	$(1.1 \pm 0.4) \times$	10-3	36.4%			
<i>ρ</i> φ [q] (1.12± 0.23)×	10-3				
pK^+K^- non- ϕ	(4.8 ± 1.9)×	10-4				
Hadronic modes with a hyperon: $S = -1$ final states						
$\Lambda \pi^+$	(1.46± 0.13) %		8.9%			
$\Lambda \pi^+ \pi^0$	$(5.0 \pm 1.3)\%$		26.0%			
$\Lambda \rho^+$	< 6 %	CL=95%				
$\Lambda \pi^+ \pi^+ \pi^-$	(3.59± 0.28) %		7.8%			
$\Sigma(1385)^+\pi^+\pi^-, \Sigma^{*+} \rightarrow$	(1.0 ± 0.5)%		20.0%			
$\Sigma(1385)^{-}\pi^{+}\pi^{+}, \Sigma^{*-} \rightarrow \Lambda\pi^{-}$	(7.5 \pm 1.4) \times	10-3	18.7%			

HTTP-/	/PDG1	BI	GOV

Page 32 Created: 10/6/2015 12

- **Total branching fraction small than 65%.**
- Lots of unknown decay channels
- Quite large uncertainties, most larger than 209
- Most BFs are measured relative to $\Lambda_c^+ \rightarrow p K^- \pi^-$

			•
$\Lambda \pi^+ \rho^0$	(1.4 ± 0.6)%		42.8%
$\Sigma(1385)^+ \rho^0, \Sigma^{*+} \rightarrow \Lambda \pi^+$	$(5 \pm 4) \times 10^{-3}$		80.0%
$\Lambda \pi^+ \pi^+ \pi^-$ nonresonant	< 1.1 %	CL=90%	
$\Lambda \pi^+ \pi^+ \pi^- \pi^0$ total	$(2.5 \pm 0.9)\%$		36.0%
$\Lambda \pi^+ n$	$[a] (2.4 \pm 0.5)\%$		20.8%
$\Sigma(1385)^{+}n$	$[a] (1.16 \pm 0.35)\%$		30.2%
$\Lambda \pi^+ \omega$	$[q] (16 \pm 06)\%$		37.5%
$A\pi^{+}\pi^{+}\pi^{-}\pi^{0}$ no <i>n</i> or <i>w</i>	< 9 × 10-3	CI 90%	
$AK + \overline{K}^0$	$(64 + 13) \times 10^{-3}$	S=1.6	20.3%
$=(1600)^{0}K^{+} = *^{0} \rightarrow A\overline{K}^{0}$	$(1.9 \pm 0.6) \times 10^{-3}$	3-1.0	33.3%
$\Sigma^{0} \pi^{+}$	$(1.0 \pm 0.0) \times 10^{-10}$		10.0%
<u>5</u> +-0	(1.431 0.14) %		21.0%
$\Sigma^+ n$	$(75 \pm 25) \times 10^{-3}$		21.5%
$\sum_{n=1}^{2} \frac{n}{n}$	$(1.5 \pm 2.5) \times 10^{-1}$		10.2%
$\Sigma + 0$	(4.9 ± 0.5)%	CI05%	10.270
$\Sigma = \sigma^+ \sigma^+$	< 1.0 %	CL=95%	17 4%
$\Sigma^{0} + 0$	(2.5 ± 0.4)%		17.470
$\Sigma^{0} = + = + = -$	$(2.5 \pm 0.9)\%$		36.0%
$\Sigma^{+}\pi^{+}\pi^{-}\pi^{-}$	(1.13± 0.31) %		21.470
Z	_		27.49/
$\Sigma + \omega$	$[q] (3.7 \pm 1.0)\%$		27.1%
Z · A · A	$(3.8 \pm 0.6) \times 10^{-3}$		15.0%
$Z \cdot \phi$	$[q] (4.3 \pm 0.7) \times 10^{-3}$		26.2%
$=(1090)^{\circ}K^{+}, =^{\circ\circ} \rightarrow$	$(1.11 \pm 0.29) \times 10^{-5}$		20.270
ΣK^+	< 9 × 10-4	CI 00%	
=0 K+	$(52 \pm 12) \times 10^{-3}$	CL=90%	24 59/
=- K+ ++++	$(3.3 \pm 1.3) \times 10^{-3}$	5-11	24.370
=(1520)0 K+	$(7.0 \pm 0.0) \times 10^{-3}$	3=1.1	29.6%
=(1550) K	$[q] (3.5 \pm 1.0) \times 10^{-5}$		20.0 %
Hadronic modes with	th a hyperon: S = 0 final st	ates	
ΛK^+	$(6.9 \pm 1.4) \times 10^{-4}$		20.3%
$\Lambda K^+ \pi^+ \pi^-$	< 6 × 10 ⁻⁴	CL=90%	
$\Sigma^0 K^+$	$(5.7 \pm 1.0) \times 10^{-4}$		17.5%
$\Sigma^{0}K^{+}\pi^{+}\pi^{-}$	< 2.9 × 10 ⁻⁴	CL=90%	
$\Sigma^+ K^+ \pi^-$	$(2.3 \pm 0.7) \times 10^{-3}$		30.4%
$\Sigma^{+}K^{*}(892)^{0}$	[a] (3.8 ± 1.2) × 10 ⁻³		31.6%
$\Sigma^{-}K^{+}\pi^{+}$	$< 1.3 \times 10^{-3}$	CL=90%	
Doubly Cal	bibbo-suppressed modes		
$pK^+\pi^-$	$< 3.1 \times 10^{-4}$	CL=90%	
Sen	nileptonic modes		
$\Lambda \ell^+ \nu_\ell$	[r] (2.8 ± 0.4)%		
a Aet ve	$(2.9 \pm 0.5)\%$		17.2%
$\sqrt{0}/\mu^{+}\nu_{-}$	$(2.7 \pm 0.6)\%$		22.2%
	(, //		22.270
+			

Λ_c^+ weak Decays

Contrary to charm meson, receive sizable non-factorization Wexchange contribution

Chau, HYC, Tseng 96

Two distinct internal W emission diagrams, three different W exchange diagrams

Need information of decay asymmetry to extract s-wave and pwave amplitudes separately

 \Box Exotic search in $\Lambda_c^+ \rightarrow \phi p \pi^0$: an analog to Pc in $\Lambda_b^0 \rightarrow J/\psi p K^-$

Λ_c^+ Data at BESIII

First time to run around 4.6 GeV in 2014, marvelous achievement of BEPCII

 Λ_{c}^{+} Measurement using the threshold pair-productions via $e^{+}e^{-}$ annihilations is unique: **the most simple and straightforward**

First time to systematically study charmed baryon at threshold!

Analysis Technique

 $\Lambda_c^+ \overline{\Lambda}_c^-$ pair production at e^+e^- collision at mass threshold, no additional hadron in final states

Tagging method :

- Single tag (ST) : reconstruct one Λ_c^+
- Double tag (DT) : fully reconstruct $\Lambda_c^+ \Lambda_c^-$ pair

Two important variables:

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\overrightarrow{p}_{\overline{\Lambda}_c}|^2}$$

$$\Delta E = E - E_{\text{beam}}$$

Advantages:

- Clean environment
 - Straightforward and model independent absolute BRs measurement
- Some systematic uncertainties canceled in DT method

Semi-Leptonic decay $\Lambda_{c}^{+} \rightarrow \Lambda l^{+} \nu_{l}$

ARGUS first measurement :

Phys. Lett. B 269, 234 (1991).

$$\sigma(e^+e^-
ightarrow \Lambda_c^+ X) \cdot \text{BR}(\Lambda_c^+
ightarrow \Lambda e^+ X) = 4.20 \pm 1.28 \pm 0.71 \text{ pb}$$

$$\sigma(e^+e^-
ightarrow \Lambda_c^+ X) \cdot {
m BR}(\Lambda_c^+
ightarrow \Lambda \mu^+ X) = 3.91 \pm 2.02 \pm 0.90 ~{
m pb}$$

CLEO improved measurement : *Phys. Lett. B 323, 219 (1994).* $\sigma(e^+e^- \rightarrow \Lambda_c^+ X) \cdot BR(\Lambda_c^+ \rightarrow \Lambda e^+ X) = 4.87 \pm 0.28 \pm 0.69 \text{ pb}$

$$\sigma(e^+e^- \rightarrow \Lambda_c^+ X) \cdot \text{BR}(\Lambda_c^+ \rightarrow \Lambda \mu^+ X) = 4.43 \pm 0.51 \pm 0.64 \text{ pb}$$

Combined with the $\tau(\Lambda_c^+)$ and the assumption of form factors

$\Lambda \ell^+ \nu_\ell$	PDG 2015	[r] (2.8 ± 0.4)%
$\Lambda e^+ \nu_e$		(2.9 \pm 0.5)%
$\Lambda \mu^+ \nu_\mu$		(2.7 \pm 0.6)%

Not a direct measurement!

Theoretical calculations on the BF ranges from 1.4% to 9.2%

The measurement of $\Lambda_{\mathbf{C}}^+ \rightarrow \Lambda l^+ \nu_l$

Double tag method 11 tag modes : $M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\vec{p}_{\bar{\Lambda}_c}|^2}$

ST yields: 14415 ± 159 events with 11 ST modes

BFs of $\Lambda_{c}^{+} \rightarrow \Lambda l^{+} \nu_{l}$ decay

First direct measurement, optimized variables : $U_{\text{miss}} = E_{\text{miss}} - c |\vec{p}_{\text{miss}}|$

Important for test and calibrate the LQCD and lepton universality.

Absolute BFs of Λ_c^+ Cabibbo-Favored Hadronic decays

Very clean backgrounds!!! PRL 116, 052001 (2016)

Results of 12 CF hadronic BFs

Straightforward and model independent

PRL 116, 052001 (2016)

A least square global simultaneous fit : [CPC 37, 106201 (2013)]

□ $B(\Lambda_c^+ \rightarrow pK^-\pi^+)$: BESIII precision comparable with Belle's □ BESIII $B(\Lambda_c^+ \rightarrow pK^-\pi^+)$ is compatible with BELLE's with 2 σ □ Improved precisions of the other 11 modes significantly

HFAG Fit to world BF data

A fitter to constrain the 12 hadronic BFs and 1 SL BF, based on all the existing experimental data, overall χ²/ndf=30.0/23=1.3
 Correlated systematics are fully taken into account

Precise $B(pK^{-}\pi^{+})$ is useful for V_{ub} measurement via baryonic mode

Observation of $\Lambda_c^+ \rightarrow n K_S^{0} \pi^+$

First observation of Λ_c^+ decays involving the neutron in final states.

The relative BF of neutron-involved mode to proton-involved mode is essential to test the isospin symmetry and extract the strong phases of different final states.

Measurement of $\Lambda_{c}^{+} \rightarrow \Sigma^{-} \pi^{+} \pi^{+} (\pi^{0})$

 \Box The total measured Λ_c^+ decay BFs is ~65%, searching for more decay modes are important

□ Only one Λ_c^+ decay involved Σ⁻ is observed, B($\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^-$)=(2.3±0.4)%, where Σ⁻ dominantly decay to nπ⁻

 $B[\Lambda_{c}^{+} \rightarrow \Sigma^{-} \pi^{+} \pi^{+}] = (1.81 \pm 0.17)\% \text{ [Improved precision]}$ $B[\Lambda_{c}^{+} \rightarrow \Sigma^{-} \pi^{+} \pi^{+} \pi^{0}] = (2.11 \pm 0.33)\% \text{ [first observation]}$

Statistical only, totally uncertainty <5%

Single-Cabibbo-Suppressed decay of $\Lambda_{c}^{+} \rightarrow p\pi^{+}\pi^{-}/K^{+}K^{-}$

Sensitive to non-factorizable contributions from W-exchanged process

SCS Decays $\Lambda_c^+ \rightarrow p\pi^0$ and $\Lambda_c^+ \rightarrow p\eta$

- Their relative size essential to understand the interference of different non-factorizable diagrams arXiv:1702.05279
- It is expected that $\Gamma(\Lambda_c^+ \rightarrow p\eta) >> \Gamma(\Lambda_c^+ \rightarrow p\pi^0)$

23

Events / (2.5MeV/c²)

30

20

10

15

10

5

 $B(\Lambda_c^+ \rightarrow p\pi^0)/B(\Lambda_c^+ \rightarrow p\eta) \leq 0.24$

The measurement of $\Lambda_c^+ \rightarrow \Lambda + X$

\Box The measurement is useful to test of HQET \Box PDC201C P(A^{+} \rightarrow A + V) = 25 + 1400

BARYON SPECTROSCOPY AT BESIII

Spectrum of Nucleon Resonances

	* * * *	* * *	**	*
N Spectrum	10	5	7	3
∆ Spectrum	7	3	7	5

→ Particle Data Group
(Phys. Rev. D86, 010001 (2012))
→ Many open questions left

Where are the "missing" baryons?

Quark models predict many more baryons than have been observed

Where are the "missing" baryons?

Are the states missing in the predicted spectrum because our models do not capture the correct degrees of freedom?

 $N_{\text{predictied}}: N_4 > N_2 > N_1 > N_3, N_{\text{observed}} << N_1$

Or have the resonances simply escaped detection?

Nearly all existing data result from πN experiments

Excited state baryon spectroscopy from lattice QCD

Exhibits broad features expected of $SU(6) \otimes O(3)$ symmetry

Counting of levels consistent with non-rel. quark model, no parity doubling

Charmonium decays can provide novel insights into baryons and complementary information to other experiments

- ✓ Pure isospin 1/2 filter: $\psi \to N\overline{N}\pi$, $\psi \to N\overline{N}\pi\pi$
- ✓ Missing N* with small couplings to $\pi N \& \gamma N$, but large coupling to gggN : $\psi \to N \overline{N} \pi / \eta / \eta' / \omega / \phi$, $\overline{p} \Sigma \pi$, $\overline{p} \Lambda K$...
- ✓ Not only N^{*}, but also Λ^* , Σ^* , Ξ^*
- ✓ Gluon-rich eviroment: a favorable place for producing hybrid (qqqg) baryons
- ✓ Interference between N* and \overline{N} * bands in $\psi \to N\overline{N}\pi$ Dalitz plots may help to distinguish some ambiguities in PWA of πN
- ✓ High statistics of charmonium @ BES III

Recent results @ BESIII

- Measurements of $\psi' \to \bar{p}K^+\Sigma^0$ and $\chi_{cJ} \to \bar{p}K^+\Lambda$
- Measurements of $\psi' \to (\gamma) K^- \Lambda \overline{\Xi}^+ + c.c.$
- Observation of $\psi' \to \Lambda \overline{\Sigma}^{\pm} \pi^{\mp} + c.c.$
- Observation of J/ $\psi \rightarrow a_0(980)p\bar{p}$
- Measurements of ${\rm J}/\psi
 ightarrow \phi p \bar{p}$
- PWA of $\psi'
 ightarrow \pi^0 p \bar{p}$
- PWA of $\psi'
 ightarrow \eta p \bar{p}$

These analyses based on 108*10⁶ ψ' decays and 225*10⁶ J/ ψ decays.

BESIII Phys.Rev. D91, 092006 (2015)

 $\Xi^-(1690)$ and $\Xi^-(1820)$ are observed in $\psi' \rightarrow K^- \Lambda \overline{\Xi}^+ + c.c.$ Resonance parameters consist with PDG

Decay	Branching fraction
$\psi(3686) \rightarrow K^- \Lambda \bar{\Xi}^+$	$(3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$
$\psi(3686) \rightarrow \Xi(1690)^- \overline{\Xi}^+, \ \Xi(1690)^- \rightarrow K^- \Lambda$	$(5.21 \pm 1.48 \pm 0.57) \times 10^{-6}$
$\psi(3686) \rightarrow \Xi(1820)^- \overline{\Xi}^+, \ \Xi(1820)^- \rightarrow K^- \Lambda$	$(12.03 \pm 2.94 \pm 1.22) \times 10^{-6}$
$\psi(3686) \rightarrow K^-\Sigma^0 \Xi^+$	$(3.67 \pm 0.33 \pm 0.28) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c0}, \chi_{c0} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.90 \pm 0.30 \pm 0.16) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.32 \pm 0.20 \pm 0.12) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.68 \pm 0.26 \pm 0.15) \times 10^{-5}$
$\chi_{c0} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.96\pm0.31\pm0.16) imes10^{-4}$
$\chi_{c1} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.43 \pm 0.22 \pm 0.12) \times 10^{-4}$
$\chi_{c2} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.93\pm0.30\pm0.15) imes10^{-4}$

In the study of $\psi' \rightarrow \gamma K^- \Lambda \overline{\Xi}^+ + c.c.$, the branching fraction of $\psi' \rightarrow K^- \Sigma^0 \overline{\Xi}^+ + c.c.$ and $\chi_{cJ} \rightarrow K^- \Lambda \overline{\Xi}^+ + c.c.$ are measured

Observation of $\psi' \to \Lambda \overline{\Sigma}^{\pm} \pi^{\mp} + c.c.$

BESIII Phys.Rev. D88, 112007 (2013)

 $\mathcal{B}(\psi(3686) \to \Lambda \bar{\Sigma}^+ \pi^- + c.c.) = (1.40 \pm 0.03 \pm 0.13) \times 10^{-4}, \\ \mathcal{B}(\psi(3686) \to \Lambda \bar{\Sigma}^- \pi^+ + c.c.) = (1.54 \pm 0.04 \pm 0.13) \times 10^{-4},$

Observation of J/ $\psi \rightarrow a_0(980)p\bar{p}$

meson-meson amplitudes in [Phys.Rev. C68 015201].

Comparing to $Br(J/\psi \rightarrow p\bar{p}\pi^+\pi^-)$ in PDG, r₄=0.2 is preferable

09

10

 M_{π^0n} (GeV/c²)

2.0

15

2.0

 $M_{p\pi^0}^2 \,(GeV^2/c^4)$

Measurements of $J/\psi \rightarrow \phi p \bar{p}$

Baryons with hidden charm PRL105 (2010) 232001, PRC84 (2011) 015202

 $\psi' \rightarrow \pi^0 p \bar{p}, \eta p \bar{p}$

Scatter plots of $p\bar{p}$ invariant mass versus $\gamma\gamma$ invariant mass

Two vertical bands: $\psi' \to \pi^0 p \bar{p}$, $\eta p \bar{p}$ Horizontal band: : $\psi' \to X + J/\psi$, $J/\psi \to p \bar{p}$

Partial wave analysis at BESIII

Tasks:

- □ Map out the resonances
- Systematic determination of resonance properties: spin-parity, resonance parameters,
 - production properties,

decay properties, ...

 resonances tend to be broad and plentiful, leading to intricate interference patterns, or buried under a background in the same and in other waves. Event-based ML fit to all observables simultaneously dynamic angular $\omega(\xi) \equiv \frac{d\sigma}{d\Phi} = \left| \sum_{i} c_{i}R_{i}B(p,q)Z(L) \right|$ Event-wise efficiency correction

 $X(2^{-+}) \to f_2(1275)\pi$

 $\mathbf{\dot{\phi}} = \frac{2}{-1} - 0.5 \mathbf{\dot{\phi}} \mathbf{$

 $f_2(1275) \rightarrow \pi\pi$

 $\dot{\mathbf{\phi}}_{2} = \frac{1}{2} -0.5 \mathbf{cos} \boldsymbol{\theta}$

$$P(\xi) = \frac{\omega(\xi)\epsilon(\xi)}{\int \omega(\xi)\epsilon(\xi)}$$

Tools: PWA

- ✓ Decompose to partial wave amplitudes
- ✓ Make full use of data
- ✓ Handle the interference
- Extract resonance properties with high sensitivity and accuracy

FDC-PWA:

automatic generation of the complicated partial wave amplitudes for baryon spectroscopy

Automatically generated Feynman diagrams in $\psi' \rightarrow \pi^0 p \bar{p}$ Diagram 3 Diagram 4 Diagram 8 Diagram 9 Diagram (Diagram 12 Diagram 13 Diagram 14 Diagram 11

Diagram 16

Feynman Diagram Calculation (FDC) Project by J.X Wang, Nucl.Instrum.Meth. A534 (2004) 241

Using an effective Lagrangian approach and covariant tensors, FDC-PWA construct amplitudes with spin wave functions, propagators and effective couplings.

For example, for $J/\psi \to \bar{N}N^*(\frac{3}{2}^+) \to \bar{N}(\kappa_1, s_1) \times$ $N(\kappa_2, s_2)\pi(\kappa_3)$, the amplitude can be constructed as

$$A_{(3/2)^{+}} = \bar{u}(\kappa_{2}, s_{2})\kappa_{2\mu}P^{\mu\nu}_{3/2}(c_{1}g_{\nu\lambda} + c_{2}\kappa_{1\nu}\gamma_{\lambda} + c_{3}\kappa_{1\nu}\kappa_{1\lambda})\gamma_{5}\upsilon(\kappa_{1}, s_{1})\psi^{\lambda}, \qquad (4)$$

where $u(\kappa_2, s_2)$ and $v(\kappa_1, s_1)$ are $\frac{1}{2}$ -spinor wave functions for N and \overline{N} , respectively; ψ^{λ} is the spin-1 wave function, i.e., the polarization vector for J/ψ . The c_1, c_2 , and c_3 terms correspond to three possible couplings for the $J/\psi \rightarrow \bar{N}N^*(\frac{3}{2}^+)$ vertex. They can be taken as constant parameters or as smoothly varying vertex form factors. The spin $\frac{3}{2}^+$ propagator $P_{3/2+}^{\mu\nu}$ for $N^*(\frac{3}{2}^+)$ is

$$P_{3/2+}^{\mu\nu} = \frac{\gamma \cdot p + M_{N^*}}{M_{N^*}^2 - p^2 + iM_{N^*}\Gamma_{N^*}} \bigg[g^{\mu\nu} - \frac{1}{3}\gamma^{\mu}\gamma^{\nu} - \frac{2p^{\mu}p^{\nu}}{3M_{N^*}^2} + \frac{p^{\mu}\gamma^{\nu} - p^{\nu}\gamma^{\mu}}{3M_{N^*}} \bigg],$$
(5)

PWA of $\psi' ightarrow \pi^0 p \bar{p}$

BESIII, Phys.Rev.Lett. 110 (2013) 022001

2 New N* are found (1/2+, 5/2-)

Resonance	$M(MeV/c^2)$	$\Gamma({ m MeV}/c^2)$	ΔS	ΔN_{dof}	Sig.
N(1440)	$1390^{+11}_{-21}^{+21}_{-30}$	$340^{+46}_{-40}^{+70}_{-156}$	72.5	4	11.5σ
N(1520)	$1510^{+3}_{-7}^{+11}_{-9}$	$115^{+20}_{-15}{}^{+0}_{-40}$	19.8	6	5.0σ
N(1535)	$1535^{+9}_{-8}^{+15}_{-22}$	$120^{+20}_{-20}{}^{+0}_{-42}$	49.4	4	9.3σ
N(1650)	$1650^{+5}_{-5}^{+11}_{-30}$	$150^{+21}_{-22}^{+14}_{-50}$	82.1	4	12.2σ
N(1720)	$1700^{+30}_{-28}{}^{+32}_{-35}$	$450^{+109}_{-94}{}^{+149}_{-44}$	55.6	6	9.6σ
N(2300)	$2300^{+40}_{-30}^{+109}_{-0}$	$340^{+30+110}_{-30-58}$	120.7	4	15.0σ
N(2570)	$2570^{+19}_{-10}{}^{+34}_{-10}$	$250^{+14}_{-24}{}^{+69}_{-21}$	78.9	6	11.7σ

The energy dependent width BW for

$$\Gamma_{N(1440)} \to \Gamma_{N(1440)}(0.7 \frac{B_1(q_{\pi N})\rho_{\pi N}(s)}{B_1(q_{\pi N}^{N*})\rho_{\pi N}(M_{N*}^2)} + 0.3 \frac{B_1(q_{\pi \Delta})\rho_{\pi \Delta}(s)}{B_1(q_{\pi \Delta}^{N*})\rho_{\pi \Delta}(M_{N*}^2)})$$

$$\Gamma_{N(1520)} \to \Gamma_{N(1520)} \frac{B_2(q_{\pi N})\rho_{\pi N}(s)}{B_2(q_{\pi N}^{N*})\rho_{\pi N}(M_{N*}^2)}$$

$$\Gamma_{N(1535)} \to \Gamma_{N(1535)}(0.5 \frac{\rho_{\pi N}(s)}{\rho_{\pi N}(M_{N*}^2)} + 0.5 \frac{\rho_{\eta N}(s)}{\rho_{\eta N}(M_{N*}^2)})$$

The other N* use constant width BW

PWA of $\psi' \rightarrow \eta p \bar{p}$

BESIII Phys.Rev. D88, 032010 (2013)

PWA of $\psi' ightarrow \eta p ar{p}$

BESIII PRD 88, 032010 (2013)

- N(1535) and PHSP(1/2-) are dominant
- No evidence for a $p\bar{p}$ resonance

Mass and width of N(1535)

- $M = 1524 \pm 5^{+10}_{-4} \text{ MeV}/c^2$
- $\Gamma = 130^{+27+57}_{-24-10} \text{ MeV}/c^2$

PDG value:

- M = 1525 to 1545 MeV/c^2
- $\Gamma = 125$ to 175 MeV/ c^2

Branching fraction:

• $B(\psi' \to N(1535)\overline{p}) \times B(N(1535) \to p\eta) + c.c. = (5.2 \pm 0.3^{+3.2}_{-1.2} \times 10^{-5})$

* For N(1535)

$$BW(s) = \frac{1}{M_{N^*}^2 - s - iM_{N^*}\Gamma_{N^*}(s)}$$

$$\Gamma_{N^*}(s) = \Gamma_{N^*}^0 \left(0.5 \frac{\rho_{N\pi}(s)}{\rho_{N\pi}(M_{N^*}^2)} + 0.5 \frac{\rho_{N\eta}(s)}{\rho_{N\eta}(M_{N^*}^2)} \right)$$

$$\rho_{NX}(s) = \frac{2q_{NX}(s)}{\sqrt{s}}$$

$$= \frac{\sqrt{(s - (M_N + M_X)^2)(s - (M_N - M_X)^2)}}{s}$$

Summary of N*'s @ BES

Modified from Rept.Prog.Phys. 76 (2013) 076301 by V. Crede and W. Roberts

N*	PDG Rating	${ m J}/\psi$			$oldsymbol{\psi}'$	
(2	(2014)	$\pi^0 p \overline{p}$	$\pi^- p\overline{n} + c.c.$	$\eta p \overline{p}$	$\pi^0 p \overline{p}$	$\eta p \overline{p}$
N(1440)1/2+	***	BES2	BES2	BES1	BES3	
N(1520)3/2-	****	BES2			BES3	BES3
N(1535)1/2-	***	BES2		BES1	BES3	
N(1650)1/2-	***	BES2		BES1	BES3	
N(1710)1/2+	***	BES2				
N(1720)3/2+	***				BES3	
N(2040)3/2+	*	BES2	BES2			
N(2300)1/2+	**				BES3	
N(2570)5/2-	**				BES3	

Estimating cross sections of $\bar{p}p \rightarrow m \Psi$ from decay widths

PRD 73 096003 A. Lundborg, T. Barnes, U. Wiedner

- Cross Section Measurement of $e^+e^- \rightarrow \bar{p}p\pi^0$ at center-of-mass energies between 4.009 and 4.60 GeV, PLB 771 45 (2017)
 - [The upper limit on the Born cross section of $e^+e^- \rightarrow Y(4260) \rightarrow \bar{p}p\pi^0$ are given]
- Study of $e^+e^- \rightarrow \bar{p}p\pi^0$ in the Vicinity of the ψ (3770), PRD 90 032007 (2014)

Summary and outlook

- The decays of charmonium provide a good laboratory for studying excited nucleons and hyperons
 - BESIII collected $0.6 \times 10^9 \psi'$ and $1.3 \times 10^9 J/\psi$ (and a lot of χ_c, η_c). The goal is to have $10^{10} J/\psi$
- BEPCII/BESIII reach a new territory to charmed baryons
 - BESIII is unique to study charmed baryons, and is complementary to others experiments
 - The funding of BEPCII upgrade for increasing beam energy has been granted

More results are expected...

Thank you for your attention