

GSI - May 9 2018 EMMI Hadron Physics Seminar

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Hadron spectroscopy at Jefferson Lab

M.Battaglieri INFN -GE Italy

e @lab12

M.Battaglieri - INFN GE

Jefferson Lab

* Primary Beam: Electrons* Beam Energy: I2 GeV

• $10 > \lambda > 0.1$ fm nucleon \rightarrow quark transition baryon and meson excited states

***100%** Duty Factor (cw) Beam

- coincidence experiments
- Four simultaneous Beams with Independently Variable Energy and Intensity
 - complementary, long experiments

* Polarization (beam and reaction products)

- spin degrees of freedom
- weak neutral currents

L > 10⁷ x SLAC at the time of the original DIS experiments!

Jefferson Lab at 12 GeV

Beyond the quark model: hybrids and exotics

Quarks are confined inside colorless hadrons they combine to 'neutralize' color force

Hadron spectroscopy at Jefferson Lab

The light quark meson spectrum

Constituent Quark Model

• Quark-antiquark pairs with total spin S=0, I and orbital angular momentum L

$$S_1$$

 S_2
 $S=S_1+S_2$
 $P=(-1)^{L+1}$ $C=(-1)^{L+S}$
 $P=(-1)^{L+1}$ $C=(-1)^{L+S}$
 $S=S_1+S_2$

Not all the J^{PC} combinations are allowed: 0⁺⁺ 0⁺⁻ 0⁻⁺ 0⁻⁺ 1⁺⁺ 1⁺⁻ 1⁻⁺ 1⁻⁻ 2⁺⁺ 2⁺⁻ 2⁻⁺ 2⁻⁺ 3⁺⁺ 3⁺⁻ 3⁻⁺ 3⁺⁺ 3⁺⁺

SU(3) flavor symmetry → nonet (8⊕1) of degenerate states

• Great success in describing the lower mass states

• A number of predicted states is not experimentally observed and assignments are uncertain

The gluons and the meson spectrum

- Understanding gluonic excitations of mesons and the origin of confinement
- At high energy experimental evidence is found in jet production
- At lower energies the hadron spectrum carries information about the gluons that bind quarks
- Can we find hints of the glue in the meson spectrum?

Search for non-standard states with explicit gluonic degrees of freedom

Not-allowed $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}...$

Unambiguous experimental signature for the presence of gluonic degrees of freedom in the spectrum of mesonic states

one of the most important issue in hadron physics and main motivation for the JLab 12 GeV upgrade

M.Battaglieri - INFN GE

<u>e () lab12</u>

Hadron spectroscopy at Jefferson Lab

M.Battaglieri - INFN GE

e 🕘 Lab12

Why photoproduction

 \star Photoproduction: exotic J^{PC} are more likely produced by S=1 probe

No spin-flip for exotic quantum number

A. Afanasev and P. Page et al. PR A57 1998 6771 A. Szczepaniak and M. Swat PLB 516 2001 72

 \star Linear polarization acts like a filter to disentangle the production mechanisms and suppress bg

 \star Production rate for exotics is expected comparable as for regular mesons

Quasi-real photoproduction with CLASI2 (Low Q² electron scattering)

$E_{scattered}$	0.5 - 4.5 GeV
θ	$2.5^{o} - 4.5^{o}$
ϕ	0° - 360°
ν	6.5 - 10.5 GeV
Q^2	$0.01 - 0.3 \text{ GeV}^2 (\langle Q^2 \rangle 0.1 \text{ GeV}^2)$
W	3.6 - 4.5 GeV

12

★ Electron scattering at "0" degrees (2.5° - 4.5°)
 ▶ low Q² virtual photon ⇔ real photon

★ Photon tagged by detecting the scattered electron at low angles
 ▶ High energy photons 6.5 < E_g < 10.5 GeV

- Quasi-real photons are linearly polarized
 Polarization ~ 70% 10% (measured event-by-event)
- ★ High Luminosity (unique opportunity to run thin gas target!)
 ▶ Equivalent photon flux N_v ~ 5 10⁸ on 5cm H₂ (L=10³⁵ cm⁻²s⁻¹)
- Multiparticle hadronic states detected in CLASI2
 High resolution and excellent PID (kaon identification)

Complementary to Hall-D (GLUEX)

Hadron spectroscopy at Jefferson Lab

The Forward Tagger and CLASI2

The CLASI2 detector

FT-Cal: PbWO₄ calorimeter electron energy/momentum Photon energy (v=E-E') Polarization $\varepsilon^{-1} \approx 1 + v^2/2EE'$ **INFN-GE, INFN-RM2, INFN-TO, JLab**

FT-Hodo: Scintillator tiles veto for photons EdinburghU+JMU+NSU+JIab

> FT-Trck: MicroMegas electron angles and polarization plane Saclay + OhioU+Jlab

Hadron spectroscopy at Jefferson Lab

13

eelab12

Meson spectroscopy with photons at JLab-12 GeV

- Determination of JPC of meson states requires PWA
- Decay and production of exclusive reactions
- Good acceptance, energy resolution, particle identification

From the data to the spectrum: Partial Wave Analysis

- Parametrize the cross section in term of partial waves
- Fit to data to extract amplitudes
- A model is needed to parametrize amplitudes: Isobar Model, Dispersion Relations, ...

Step I: decompose to PW

Step2: extract resonance parameters

Ī

Early **Guy** Physics

M

• Beam asymmetry Σ provides insight into dominant production mechanism

$$\Sigma = \frac{|\omega + \rho|^2 - |h + b|^2}{|\omega + \rho|^2 + |h + b|^2}$$

- Understanding production mechanism critical to disentangling J^{PC} of observed states in exotic hybrid search
- Preliminary studies are already showing interesting features

Some selected results form CLAS6

MB, R.DeVita A. Szczpaniak et al Phys.Rev.Lett. 102:102001,2009 MB, R.DeVita A. Szczpaniak et al Phys.Rev. D<u>80:072005,2009</u>

γ p → p π π

 $M(\pi^+\pi^-)$ spectrum below 1.5 GeV:

- P-wave: ρ meson
- D-wave: f₂(1270)
- S-wave: σ, f₀(980) and f₀(1320)

$$\langle Y_{\lambda\mu}\rangle(E_{\gamma},t,M) = \frac{1}{\sqrt{4\pi}} \int d\Omega_{\pi} \frac{d\sigma}{dt dM d\Omega_{\pi}} Y_{\lambda\mu}(\Omega_{\pi})$$

Amplitude parametrization (Dispersion relation)Related to ππ scattering matrix: phase-shift, inelasticity, S-P-D-Famplitude in 0.4 GeV < M_π < 1.4 GeV</td>

$$a_{lm,I}(s) = \frac{1}{2} [I + S_{lm,I}(s)] \tilde{a}_{lm,I}(s) - \frac{1}{\pi} D_{lm,I}^{-1}(s) PV \int_{s_{th}} ds' \frac{N_{lm,I}(s')\rho(s')\tilde{a}_{lm,I}(s')}{s' - s}$$

$$\tilde{a}_{lm,I} = [\mathcal{A} + \mathcal{B}s + \mathcal{C}s^2 + \cdots][k]$$

Expanded in a Taylor series: coefficient fit to the experimental moment

First observation of the $f_0(980)$ in a photoproduction experiment

Hadron Spectroscopy at CLAS and CLAS12

<u>e (ab 12</u>

the follow-up ...

$\gamma p \rightarrow p k k$

- S.Lombardo (IU/Cornell)
- Full analysis from gII CLAS6 data set
- S-P interference in 2k system

Method:

- Extract moments from data
- Parametrise amplitudes with a model:
 - P-wave: pomeron, s-wave: rho, omg t-exch

• Fit moments to obtain PW cross sections

2k amplitudes provided by JPAC

M.Battaglieri - INFN GE

towards a full PWA

$\gamma p \rightarrow p k k$

- I.Stankovic (U Edinburgh)
- Full PWA using the same CLAS6 -
- gll data set

Procedure:

- Extract moments from data in a model independent way and compare to the previous CLAS6 analysis
- Test the fit procedure on pseudo data
- Run the full PWA to extract the dominant and sub-leading waves

Photoproduction of $K^+ K^-$ meson pairs on the proton

S. Lombardo,³⁵ HASPECT WORKING GROUP MEMBERS,³⁵ K. P. Adhikari,³⁵ M.J. Amaryan,³⁵ M. Anghinolfi,¹ H. Baghdasaryan,⁴⁵ I. Bedlinskiy,²² M. Bellis,⁷ L. Bibrzycki,²⁹ A.S. Biselli,^{13,36} C. Bookwalter,¹⁵ D. Branford,¹² W.J. Briscoe,¹⁶ V.D. Burkert,⁴² S.L. Careccia,³⁵ J. S. Carman,⁴² E. Clinton,²⁸ P.L. Cole,¹⁸ P. Collins,⁴ V. Crede,¹⁵ D. Dale,¹⁸ A. D'Angelo,^{20,38} A. Daniel[?] Dashyan,⁴⁷ E. De Sanctis,¹⁹ A. Deur,⁴² v,¹ H. Egiyan,^{30, 42} P. Eugenio,¹⁵ S. Dhamija,¹⁴ C. Djalali,⁴¹ G.E. Dodge,³⁵ D. Doughty,^{10,4°} G. Fedotov,⁴⁰ S. Fegan,¹⁷ A. Fradi,²¹ M.Y. Gabrielyan,¹⁴ L. n,⁹ A. Gasparian,³³ G.P. Gilfoyle,³⁷ K.L. Giovanetti,²⁴ F.X. Girod,^{9,*} O. Glamazdin,²⁶ J. etz,⁵ W. Gohn,¹¹ E. Golovatch,^{40,1} л,³ H. Hakobyan,^{44,47} C. Hanretty,¹⁵ R.W. Gothe,⁴¹ K.A. Griffioen,⁴⁶ M. Guidal,²¹ L. N. Hassall,¹⁷ K. Hicks,³⁴ M. Holtrop,³⁰ C.E. Hyde,³⁵ .d. Ireland,¹⁷ E.L. Isupov,⁴⁰ J.R. Johnstone,¹⁷ K. Joo,¹¹ D. Keller,³⁴ M. Khandaker,³¹ P. V .im,²⁷ A. Klein,³⁵ F.J. Klein,⁸ M. Kossov,²² A. Kubarovsky,³⁵ V. Kubarovsky,⁴² S.V . Kuznetsov,²⁷ J.M. Laget,^{42,9} L. Lesniak,²⁹ K. Livingston,¹⁷ H.Y. Lu,⁴¹ M. Mayer,³ n,⁷ B. McKinnon,¹⁷ C.A. Meyer,⁷ K. Mikhailov,²² T Mineeva,¹¹ M. Mirazita,¹⁹ V. Moch ,^{40, 42} K. Moriya,⁷ E. Munevar,¹⁶ P. Nadel-Turonski,⁸ I. Nakagawa,³⁹ C.S. Nepali,³⁵ S. Nir cu,²⁴ M.R. Niroula,³⁵ M. Osipenko,^{1,40} A.I. Ostrovidov,¹⁵ K. Park, 41, 27, * S. Park, 15 M asyuk,⁴ S.Anefalos Pereira,¹⁹ S. Pisano,²¹ N. Pivnyuk,²² O. Pogorelko,²² S. Pozdniako Y. Prok,^{45,‡} D. Protopopescu,¹⁷ B.A. Raue,^{14,42} G. Ricco,⁴ r. Rossi,¹⁹ F. Sabatié,⁹ M.S. Saini,¹⁵ C. Salgado,³¹ D. Schott,¹⁴ M. Ripani,¹ B.G. Ritchie,⁴ G. R.A. Schumacher,⁷ H. Seraydaryan,³⁵ Sharabian,⁴² D.I. Sober,⁸ D. Sokhan,¹² A. Stavinsky,²² S. Stepanyan,⁴² S. S. Stepanyan,²⁷ P. Stoler,³⁶ I.I. Strakovsky,¹⁶ S. Strauch,^{41,16} M. Taiuti,¹ D.J. Tedeschi,⁴¹ A. Teymurazyan,²⁵ S. Tkachenko,³⁵ M. Ungaro,^{11,36} M.F. Vineyard,⁴³ A.V. Vlassov,²² D.P. Watts,^{17,§} L.B. Weinstein,³⁵ D.P. Weygand,⁴² M. Williams,⁷ E. Wolin,⁴² M.H. Wood,⁴¹ L. Zana,³⁰ J. Zhang,³⁵ B. Zhao,^{11, ¶} and Z.W. Zhao⁴¹ (The CLAS Collaboration)

The 3π system from CLAS6-g12 data set

Reference reaction $\gamma p \rightarrow (n) \pi^+ \pi^+ \pi^-$

- * Possible evidence of exotic meson $\pi_1(1600)$ in $\pi^-p \rightarrow p \pi^-\pi^-\pi^+$ (E852-Brookhaven)
- * Not confirmed in a re-analysis of a higher statistic sample
- * Now confirmed by Compass
- * Simple final state with low bg

Compass: PRL 104, 241803 (2010)

The 3π system from CLAS6-g12 data set

Reference reaction $\gamma p \rightarrow (n) \pi^+ \pi^+ \pi^-$

- * Possible evidence of exotic meson $\pi_1(1600)$ in $\pi^-p \rightarrow p \pi^-\pi^-\pi^+$ (E852-Brookhaven)
- * Not confirmed in a re-analysis of a higher statistic sample
- * Now confirmed by Compass
- * Simple final state with low bg

21

$\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$

- Three charged pions selected
- Neutron identified by energy and momentum conservation

$\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$

- Four charged pions selected
- Proton identified by energy and momentum conservation

A.Tsaris, P.Eugenio (FSU)

- First observation of the $a_1(1260)$ in a photoproduction experiment
- The $a_2(1320)$ and $\pi_2(1670)$ observed
- The J^{PC}=I-+ does not show resonant behaviour and consistent with nonresonant non interfering wave relative to a resonant $\pi_2(1670)$
- Same results for $\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$

The 3π system from CLAS6-gl2 data set $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$

PWA in CLAS is feasible! Needs to have higher energy and statistics and test other final states -> CLASI2

PWA with CLASI2

D.Glazier (U of Glasgow)

$\gamma \, p \rightarrow \, n \, \pi^{\scriptscriptstyle +} \, \pi^{\scriptscriptstyle -}$

- The process is described as sum of 8 isobar channels:
 - $a_2 \rightarrow \rho \pi$ (D-wave)
 - $a_1 \rightarrow \rho \pi \text{ (S-wave)}$
 - $a_1 \rightarrow \rho \ \pi \ (D-wave)$
 - $\pi_2 \rightarrow \rho \ \pi \ (P-wave)$
 - $\pi_2 \rightarrow \rho \ \pi \ (F-wave)$
 - $\pi_2 \rightarrow f_2 \pi(S\text{-wave})$
 - $\pi_2 \rightarrow f_2 \pi$ (D-wave)
 - $\pi 1 \rightarrow \rho \pi$ (P-wave) (exotic)
- Amplitudes calculated by A.Szczepaniak and P.Guo
- CLASI2 acceptance projected and fitted
- PWA is stable against CLASI2 acceptance/ resolution distortion

PWA in CLASI2 is feasible!

A new (old?) approach: Veneziano amplitudes

$\gamma p \rightarrow p \omega \rightarrow p \pi \pi \pi$

- A. Celentano (INFN-GE)
- Decay decouples production from genuine meson-meson interaction
- ω decay M($\pi^+\pi^-$) <0.45 GeV
- 3-body effects

Analysis in collaboration with JPAC

$$\begin{split} A_{\lambda} &= \varepsilon_{\mu\nu\alpha\beta} \, p_{+}^{\nu} p_{-}^{\alpha} p_{0}^{\beta} \varepsilon_{\lambda}^{\mu} \, A(s,t,u) \\ I &= \sum_{\lambda,\lambda'} A_{\lambda}^{*} \rho_{\lambda'}^{\lambda} A_{\lambda'} = K^{2} W_{\rho}(\theta,\phi) |A|^{2} \\ K^{2} &= s \, t \, u - m^{2} (M^{2} - m^{2})^{2} = |\vec{p_{a}} \times \vec{p_{b}}|^{2} \\ W_{\rho}(\theta,\phi) : \text{ Spin density matrix} \end{split}$$

$\begin{array}{c} Y p \rightarrow p \eta' \rightarrow p \pi \pi \eta \\ \rightarrow p f_{I}(1285) \eta \end{array}$

- A. Rizzo (INFN-RM2)
- $(\pi\eta)$ invariant mass spectrum
- η' decay Μ(πη) <0.8 GeV

amplitudes provided by JPAC

η' meson

M.Battaglieri - INFN GE

The $\eta\pi$ in CLAS6-g12

γ p → **p** η π

• A.Celentano (INFN-GE) PhD Thesis

Amplitudes provided by V.Mathieu (ECT*) and A.Szczepaniak (IU&JLab)
Preliminary analysis on CLAS6 data to fix

parameters

- Full projection on CLASI2 and PWA
- Sensitivity for P-wave > 5% a₂(1320)

Needs higher energy, higher statistics -> CLASI2

e 8 lab12

PWA with CLAS12

High level physics analysis is starting soon!

\$1500 4000 3500 3000 2500 2000 1500 1000 500 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Q2 /GeV^2

- γ_v Linear polarisation: $\sigma'_{TT}(\Sigma)$
- Xsection
- Large-t behaviour $d\sigma/dt(90^{\circ})$
- e- polarisation: σ_{TL} (no available in photoproduction!)
- Full PWA

$e p \rightarrow e' p \pi 0 (\gamma p \rightarrow p \pi 0)$

- S.Dihel (U Giessen)
- Full CLASI2 GEANT4

simulation

- Full reconstruction
- Electroproduction amplitudes provided by JPAC (V.Mathieu)

- AMPTOOLS
- Electron detected at small angles in the CLASI2-FT

Transition form factor evolution in Q² as a filter?

Electro-production can be used to explore the hadron structure at different wavelengths (Q2)

Electro-couplings of "Roper" N(1440)1/2+ $A_{1/2}(10^3 {\rm GeV}^{-1/2})$ nπ⁺ **clc** S₁₁₂ (10⁻³GeV^{-1/2} 50 60 40 20 faster than for ordinary 20 0 a³G -20 because of extra gluenπ -40 a³G component in valence -10 -60 -20 -80 2 2 Q^2 (GeV²) Q^2 (GeV²)

A suppressed longitudinal amplitude $S_{1/2}(Q_2)$ in comparison with transverse electro-excitation amplitude Q₃G Q₃G

• NTT and NTTT give consistent results

A drop of the

transverse helicity

amplitudes $A_{1/2}(Q_2)$

three quark states,

structure

- $A_{1/2}$ changes sign and has large magnitude at high Q^2
- QM fails to reproduce low Q^2 behavior, LFQM better at large Q^2
- Both $A_{1/2}(Q^2)$ and $S_{1/2}(Q^2)$ inconsistent with hybrid model prediction

CLASI2 will map out the full meson/baryon spectrum and its evolution in Q2

Hadron spectroscopy at Jefferson Lab

Hadron spectroscopy ingredients

* Experiment

* Theory

* Analysis strategy

- PWA: Isobar Model, ad-hoc solutions for limited kinematic domain
- PWA: how far can go a model-independent PWA in the real world?
- Multiple channels approach (Q2 as a filter?)
- Spot vs systematic studies
- Could meson decay's studies simplify the analysis?
- Data: CLAS6 (gII, gI2, eXX), CLASI2

JLab Working Groups activity: HASPECT, LMD, CLAS/PANDA, JPAC, ...

* Analysis tools

JLab Working Groups activity

★ HASPECT (HAdron SPEctroscopy CenTer) WG

Stable working group in Genova + satellites
Weekly skype meetings and HASPECT weeks
Analysis of CLAS data and projection on CLASI2

★ LMD (Light Mesons Decay) WG

- Stable working group at JLab
- Involvement of Julich Group
- Interest for a wide community (e+e- colliders)

★ CLAS/PANDA Joint Activity Board

- Mixed committee to explore overlaps and synergies
- light and heavy quark spectroscopy
- complementarity of production/annihilation

★ JPAC (Joint Physics Analysis Center)

- Develop the analysis framework
- Analysis of JLab and world-data
- Progress in amplitude analysis

★ PyPWA project

30

Present:

- e+e-: BESIII and KLOE
- B decay: LHCb
- Belle, CLEO, BABAR

Future:

- Photoproduction at JLab:
- p p-bar at GSI: PANDA

Act locally but think globally! THE GEORGE INDIANA UNIVERSITY Jefferson Lab WASHINGTON UNIVERSITY BLOOMINGTON celerator Facility WASHINGTON, DO Global strategy: Joint Physics Analysis Center *Creation of twin and parallel centers for both HOME PROJECTS PUBLICATIONS LINKS analysis and theory development *Collaboration and exchanges: personnel, short U.S. DEPARTMENT OF **National Science** ENERGY Foundation visits, ... JPAC acknowledges support from DOE and NSF *Coordination via Joint Physics Analysis Center **NEWS** *Creation of a "Hadron spectrum" working group V.Mathieu November 2016: • The $\gamma p \rightarrow \eta p$ page is online. June 2016: • The $\gamma p \rightarrow J/\psi p$ page is online. Glasgow • The πN page is online. GSI Edinburgh Darmstadt October 2015: Julich BESIII The KN page is online. Indiana University GW Beiiing BELLE TUM May 2015: Munchen Beijing LHCb, COMPASS The website is launched. merica Asia • The $\gamma p \rightarrow \pi^0 p$ page is online. **CERN** • The $\omega, \phi \to 3\pi$ page is online. KLOE LNF HASPECT \circ The $\eta ightarrow 3\pi$ page is online North Pa Ocean Genova ILab Ocear Physics Analysis Africa Center Common funding plans: • European-FP7 (EU calls and local): South HaSP-STRONG2020 Indian Ocean America South Pacific DOE-Topical -collaboration Australia South Atlantic Ocean proposals Ocean • Canaletto/LiQuHas (Italy/Polland)

Conclusions

* Comprehensive meson spectroscopy program at JLab (Gluex & MesonEx)

* Exotics and strangeness-rich mesons search with CLASI2 detector exploiting excellent resolution and particle ID

* Bremsstrahlung and Low Q^2 electron scattering to produce a high intensity, linear polarized, real (Hall-D) and quasi-real (Hall-B) photon beam

* Experience in PWA gained with CLAS6 will be valuable for CLAS12 and GLUEX

* Expected abundant and precise data requires a solid PWA analysis framework

* Continuous interaction between JLab WGs (HASPECT, LMD, JPAC) and the other centers (CERN, BESIII, GSI, Julich) to meet the challenge

High-performance detectors, high intensity e/γ beams, strong analysis framework are the ingredients to make JLab a leading facility in modern hadron spectroscopy

Backup slides