
Deciphering XYZ

(PANDA oriented)

M. Voloshin

FTPI, University of Minnesota

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

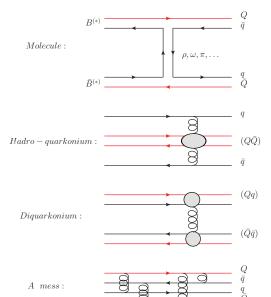
The exotic menu

Exotic: not fitting the template Mesons = $(q\tilde{q})$, Baryons = (qqq).

Charmonium-like

► X(3872) (D^0D^{*0}) , $\rightarrow J/\psi\rho$ and $J/\psi\omega$, isospin badly broken,

+
$$Z_{c_{-}}^{\pm,0}(3900)~(DD^{*}),
ightarrow J/\psi\pi$$


- Z_c^{\pm} (4020), $(D^*\bar{D}^*)$, $\to h_c\pi^{\pm}$,
- ► $Z_{1_{+}}^{\pm}$ (4050), Z_{2}^{\pm} (4250) $\rightarrow \chi_{c1}\pi^{\pm}$,
- $Z_c^{\pm}(4100) \longrightarrow \eta_c \pi^{\pm},$
- $\triangleright \ Z_c^{\pm}(4200) \qquad \rightarrow J/\psi \pi^{\pm},$
- $\blacktriangleright Z^{\pm}(4430), \qquad \rightarrow \psi(2S)\pi^{\pm},$
- ► $Y(4260)[4220] \rightarrow J/\psi \pi \pi, h_c \pi \pi$ (almost no open charm),
- $Y(4360) \rightarrow \psi(2S)\pi\pi, h_c\pi\pi$ (almost no open charm),
- ► Pentaquark(s): $P_c(4380), P_c(4440), P_c(4457), P_c(4312) \rightarrow J/\psi p$

Bottomonium-like

- ► $Z_{b}^{\pm,0}(10610), (BB^*), \rightarrow \Upsilon(nS)\pi \ (n = 1, 2, 3), h_b(kP)\pi \ (k = 1, 2),$
- ► $Z_b^{\pm,0}(10650), (B^*\bar{B}^*), \rightarrow \Upsilon(nS)\pi \ (n = 1, 2, 3), \ h_b(kP)\pi \ (k = 1, 2)$

<□ > < @ > < E > < E > E のQ@

What is inside?

Likely all are present simultaneously. Dominant — different in different particles.

Recall: deuteron — mostly a *pn* molecule, and about 5% - a mess.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ●

Molecules

Must be very close to the threshold. At binding/excitation energy δ, the characteristic size

$$r \sim 1/\sqrt{M\delta} \approx \begin{cases} 4.5 \, \text{fm}\sqrt{\frac{1 \, \text{MeV}}{\delta}} & \text{charmonium} - \text{like} \\ 2.8 \, \text{fm}\sqrt{\frac{1 \, \text{MeV}}{\delta}} & \text{bottomonium} - \text{like} \end{cases}$$

► A clear-cut example: $Z_b(10610) = Z_b$, $Z_b(10650) = Z'_b$ $M(Z_b) = 10607.2 \pm 2.0 \text{ MeV } [M(BB^*) = 10604.1 \pm 0.3 \text{ MeV}],$ $M(Z'_b) = 10652.2 \pm 1.5 \text{ MeV } [M(B^*\bar{B}^*) = 10649.7 \pm 0.6 \text{ MeV}]$

$$Z_b \sim rac{B^*ar{B}-ar{B}^*B}{\sqrt{2}}, ~~ Z_b^{'} \sim B^*ar{B}^*$$

- ► Produced in $\Upsilon(5S) \to Z_b^{(')}\pi$. Observed in $Z_b^{(')} \to \Upsilon(1,2,3S)\pi$ and $Z_b^{(')} \to h_b(1,2P)\pi$. Also $Z_b \to B^*\bar{B} + c.c., Z_b' \to B^*\bar{B}^*$.
- ▶ In charmonium-like sector: *X*(3872), *Z*_c(3900), *Z*_c(4020).

Heavy Quark Spin Symmetry (HQSS) and Molecules

HQ spin-dependent interaction of heavy Q

$$H_{s} = -rac{ec{\sigma}\cdotec{B}}{2\,M_{Q}}\sim rac{\Lambda_{QCD}^{2}}{M_{Q}}\ll \Lambda_{QCD}$$

► E.g. $\Upsilon(2S) \rightarrow \Upsilon(1S)\eta$ requires $b\bar{b}$ spin rotation (Ampl. $\propto (\vec{p}_{\eta} \cdot [vec\Upsilon_2 \times \vec{\Upsilon}_1]))$:

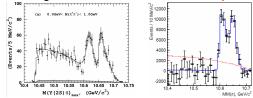
$$\Gamma[\Upsilon(2S) o \Upsilon(1S)\eta] \sim 10^{-3} \, \Gamma[\Upsilon(2S) o \Upsilon(1S)\pi\pi]$$

► In a widely separated B^(*)B^(*) pair the spin of b is not correlated with the spin of b̄. Rather

 $H_{spin} = \mu \left(ec{s}_b \cdot ec{s}_{ar{q}}
ight) + \mu \left(ec{s}_{ar{b}} \cdot ec{s}_q
ight), \quad \mu = M(B^*) - M(B) pprox 45 \, \mathrm{MeV}$

• The spin of the $b\bar{b}$ pair (S_H) is mixed. In the $J^{PC} = 1^{+-}$ state:

$$B^*\bar{B}-\bar{B}^*B\sim 0^-_H\otimes 1^-_L+1^-_H\otimes 0^-_L \qquad B^*\bar{B}^*\sim 0^-_H\otimes 1^-_L-1^-_H\otimes 0^-_L$$


Spin structure of $Z_b^{(\prime)}$

• If the $H \otimes L$ spin composition of pairs of free mesons is retained in Z_b and Z'_b ,

$$Z_b \sim \mathbf{0}^-_H \otimes \mathbf{1}^-_L + \mathbf{1}^-_H \otimes \mathbf{0}^-_L \qquad Z_b^\prime \sim \mathbf{0}^-_H \otimes \mathbf{1}^-_L - \mathbf{1}^-_H \otimes \mathbf{0}^-_L \;,$$

then

- ► $M(Z'_b) M(Z_b) \approx M(B^*) M(B) \approx 45 \text{ MeV}, \Gamma(Z'_b) \approx \Gamma(Z_b)$, in particular $\Gamma(Z'_b) \rightarrow B^*\bar{B} + c.c.$ should be small;
- ► $A[Z'_b \to \Upsilon(nS) \pi] \approx -A[Z_b \to \Upsilon(nS) \pi], \quad A[Z'_b \to h_b(kP) \pi] \approx +A[Z_b \to h_b(kP) \pi];$
- $A[\Upsilon(5S) \rightarrow Z'_b \pi] \approx -A[\Upsilon(5S) \rightarrow Z_b \pi];$
- Definite and opposite sign of interference of Z_b and Z'_b in the $\pi\pi$ cascades from $\Upsilon(5S)$ to ortho- and para- states of $b\bar{b}$
- Well agrees with the data. In fact surprisingly well.

S wave molecules related by HQSS, Charmonium-like.

$$J^{PC} = 1^{+1} Z_c(3900) \sim D\bar{D}^* - \bar{D}D^* \sim 0^-_H \otimes 1^-_L + 1^-_H \otimes 0^-_L$$

•
$$J^{PC} = 1^{+1} Z_c(4020) \sim D^* \overline{D}^* \sim 0^-_H \otimes 1^-_L + 1^-_H \otimes 0^-_L$$

• Other diagonal states of the Hamiltonian H_s with PC = ++:

$$\begin{split} X_{c2} : & 1^{-}(2^{+}) : & (1^{-}_{H} \otimes 1^{-}_{L})|_{J=2} , \quad D^{*}\bar{D}^{*} ; \\ X_{c1} : & 1^{-}(1^{+}) : & (1^{-}_{H} \otimes 1^{-}_{L})|_{J=1} , \quad D^{*}\bar{D} + \bar{D}^{*}D; \\ X'_{c0} : & 1^{-}(0^{+}) : & \frac{\sqrt{3}}{2} (0^{-}_{H} \otimes 0^{-}_{L}) + \frac{1}{2} (1^{-}_{H} \otimes 1^{-}_{L})|_{J=0} , \quad D^{*}\bar{D}^{*} ; \\ X_{c0} : & 1^{-}(0^{+}) : & \frac{1}{2} (0^{-}_{H} \otimes 0^{-}_{L}) - \frac{\sqrt{3}}{2} (1^{-}_{H} \otimes 1^{-}_{L})|_{J=0} , \quad D\bar{D} ; \end{split}$$

- ► In charmonium-like sector in fact $X_{c1} = X(3872) \sim D^0 \overline{D}^{*0} + \overline{D}^0 D^{*0}$ (mixture of I = 0 and I = 1.)
- ▶ The interaction depends on S_L : V_0 , V_1 . Generally $V_0 \neq V_1$. However X(3872) and X_{c2} are pure $S_L = 1 \Rightarrow$ Existence of X(3872) implies existence of $J^{PC} = 2^{++}$ resonance at the $D^{*0}\bar{D}^{*0}$ threshold, 4013.7 MeV. Could be broad, >10 MeV.May be testable by PANDA.

(ロ) (同) (三) (三) (三) (○) (○)

Molecules at PANDA

- ► A caveat for studies of molecules in pp̄ only I = 0 states have a chance to be produced in a short-distance process (pp̄, B decays, etc...)
- Molecules are spatially BIG. For charmonium-like

$$r \sim 1/\sqrt{M\delta} \approx 4.5 \,\mathrm{fm}\sqrt{\frac{1\,\mathrm{MeV}}{\delta}}$$

- The overlap with a short-distance source (|ψ(0)|²) is small ⇒ small rate
- ► X(3872) is produced in short-distance processes due to mixing with compact charmonium cc
- The mixing is possible only in the I = 0 isotopic state.
- ► ⇒ The prospects of producing molecules at PANDA depend on *i* I = 0 content and *ii* the mixing with $c\bar{c}$.
- X(3872) appears to be OK. Its 2⁺⁺ partner near 4013.7 MeV depends on the mixing with 2⁺⁺ charmonium.
- Othe states exploratory.

A side remark on diquarkonium $[Qq][\bar{Q}\bar{q}]$

- Driving idea: in antisymmetric [*Qq*] attraction, in symmetric {*Qq*} repulsion. Inspired by Coulomb-like one gluon exchange.
- However generally there are transitions $[Qq][\bar{Q}\bar{q}] \leftrightarrow \{Qq\}\{\bar{Q}\bar{q}\}$
- One gluon exchange in $Q(1)\overline{Q}(2)q(3)\overline{q}(4)$ in terms of $c_{ij} = \alpha_s/r_{ij}$:

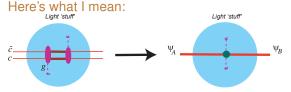
$$V\left(\begin{array}{c} [Qq][\bar{Q}\bar{q}]\\ \{Qq\}\{\bar{Q}\bar{q}\}\end{array}\right) = -\frac{1}{4} \left(\begin{array}{c} \frac{N_c^2 - 1}{N_c} r + \frac{N_c + 1}{N_c} t & \sqrt{N_c^2 - 1} s\\ \sqrt{N_c^2 - 1} s & \frac{N_c^2 - 1}{N_c} r - \frac{N_c - 1}{N_c} t\end{array}\right) \left(\begin{array}{c} [Qq][\bar{Q}\bar{q}]\\ \{Qq\}\{\bar{Q}\bar{q}\}\end{array}\right)$$

$$N_c$$
 - number of colors, $r = c_{12} + c_{34} + c_{14} + c_{23}$,
 $s = c_{12} + c_{34} - c_{14} - c_{23}$, $t = 2c_{13} + 2c_{24} - c_{12} - c_{14} - c_{23} - c_{34}$

- ▶ *s* attraction between the diquarks (zero overall color), *t* attraction/repulsion within $[Qq]/{Qq}$, *r* mixing $[Qq][\bar{Q}\bar{q}] \leftrightarrow {Qq}{\bar{Q}\bar{q}}$
- ▶ difference attraction repulsion within $[Qq]/Qq \propto 2N_c/N_c = 2$; mixing term $\propto \sqrt{N_c^2 - 1} = O(N_c) \Rightarrow$ parametrically mixing ≫ difference.
- There is no parameter that would keep diquarks color antysymmetric in a QQqq system!

Hadro-charmonium

No obvious nearby threshold


- ► Z_1^{\pm} (4050), Z_2^{\pm} (4250) → $\chi_{c1}\pi^{\pm}$ (status unclear),
- $\blacktriangleright \ Z_c^{\pm}(4100) \qquad \rightarrow \eta_c \pi^{\pm},$
- $Z_c^{\pm}(4200) \longrightarrow J/\psi\pi^{\pm},$
- ► Z^{\pm} (4430), $\rightarrow \psi$ (2S) π^{\pm} ,

Still under discussion $[D_1\left(\frac{3}{2}^+\right)\overline{D}$ nearby threshold but *S* wave in e^+e^- forbidden by HQSS]:

(日) (日) (日) (日) (日) (日) (日)

- ► $Y(4260)[4220] \rightarrow J/\psi \pi \pi, h_c \pi \pi$ (almost no open charm),
- $Y(4360) \rightarrow \psi(2S)\pi\pi, h_c\pi\pi$ (almost no open charm)

To me these all look like 'a charmonium stuck in a light hadron'. At least this can explain why a specific charmonium state e.g. J/ψ , or ψ' , or η_c appears in the decay.

A van der Waals type interaction due to chromo-polarizability

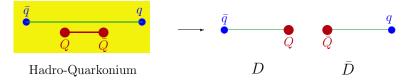
$$\langle B|H_{eff}|A\rangle = -\frac{1}{2}\alpha_{AB}\vec{E}^{a}\cdot\vec{E}^{a}$$
 Chromo – polarizability : α_{AB}

 $|\alpha_{\psi' J/\psi}| \approx 2 \, GeV^{-3}$ is known from $\psi' \to \pi \pi J/\psi$. Schwartz inequality $\alpha_{J/\psi} \alpha_{\psi'} \ge \alpha_{\psi' J/\psi}^2$.

$$\langle X | \vec{E}^a \cdot \vec{E}^a | X \rangle \geq \langle X | \vec{E}^a \cdot \vec{E}^a - \vec{B}^a \cdot \vec{B}^a | X \rangle = -\frac{1}{2} \langle X | (F^a_{\mu\nu})^2 | X \rangle = \frac{32\pi^2}{9} M_X^2$$

X=(Light hadron) ⇒ strong interaction with heavier hadronic states made of light quarks and gluons. E.g. J/ψ binding potential in heavy nuclei V < -27 MeV. If charmonium-light hadron interaction is described by potential V(x), the low-energy theorem implies that

$$\int V(x) \, d^3x \leq -rac{8\pi^2}{9} \, lpha^{(\psi)} \, M_X$$


The existence of bound state depends on relation between the mass M_X and the size of the hadron R:

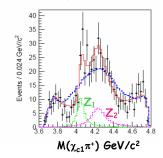
$$\alpha^{(\psi)} \, \frac{M_X \bar{M}}{R} \ge O(1)$$

 $(\bar{M} = M_X M_{\psi}/(M_X + M_{\psi})$ - reduced mass.) If with excitation R grows slower than M_X then binding necessarily occurs at sufficiently high excitation. E.g. in bag model $R \propto M^{1/3}$. Linear Regge trajectories: $R \propto M$ and a better analysis is needed. In a holographic model with linear Regge behavior binding necessarily occurs at a high excitation. (S. Dubynskiy, A. Gorsky, M.B.V.)

Decay to open heavy flavor requires reconnection of the couplings

Born-Oppenheimer potential between heavy:

The tunneling momentum $|p_Q| = \sqrt{M_Q (V_{Q\bar{Q}} - E)} \sim \sqrt{M_Q \Lambda_{QCD}} \Rightarrow$


 $\Gamma(\rightarrow \text{ open flavor}) \propto \exp(-\sqrt{M_Q/\Lambda_{QCD}})$

If such interpretation of Y's and Z's has anything to do with reality, there should be:

- bound states of J/ψ and/or ψ' with light nuclei and with baryonic resonances, i.e. baryo-charmonium decaying to e.g. pJ/ψ (+ pions) ⇒ pentaquarks
- ► resonances containing χ_{cJ} charmonium, i.e. in χ_{cJ} +pion(s) $Z_1^{\pm}(4050), Z_2^{\pm}(4250) \rightarrow \chi_{c1}\pi^{\pm}$
- b decays (moderately suppressed) into non-preferred charmonium states, e.g. Y(4260) → ππψ', or Y(4.36) → ππJ/ψ
- Contain compact charmonium inside ⇒ can be produced in hard processes: *B* decays, *pp*, LHC, …

$Z_1(4050), Z_2(4250)$

Belle 08: $Z_{1,2}^+ \rightarrow \pi^+ \chi_{c1}$. (Observed in $B \rightarrow K \pi^+ \chi_{c1}$)

*Z*₁ : *M* ≈ 4.05 GeV, Γ ≈ 80 MeV. *Z*₂ : *M* ≈ 4.25 GeV, Γ ≈ 180 MeV. Notice: *Z*(4430) – *Z*₂(4250) ≈ $\psi' - \chi_{c1} \approx 180$ MeV. Could it be that they have the same hosting light-meson resonance? However Γ_{*Z*₂} ≈ 4 Γ_{*Z*(4430)} (???) Neither *Z*₁ nor *Z*₂ confirmed by BaBaR or any other.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

 $Z_c(4100), Z_c(4200)$

- ► Belle 2014: $B^0 \to J/\psi \pi^- K^+$ resonance in $J/\psi \pi^-$ (6.2 σ), Z_c (4200), $M = 4196^{+35}_{-32}$ MeV, $\Gamma = 370^{+170}_{-150}$ MeV, $\mathcal{B}[B^0 \to Z_c(4200)^- K^+ \to J/\psi \pi^- K^+] \approx 2.2 \times 10^{-5}$, $J^P = 1^+$ preferred.
- ► LHCb 2018: $B^0 \to \eta_c \pi^- K^+$ resonance in $\eta_c \pi^-$ (> 3 σ), Z_c (4100), $M = 4096 \pm 20^{+18}_{-22}$ MeV, $\Gamma = 152 \pm 58^{+60}_{-35}$ MeV $\mathcal{B}[B^0 \to Z_c(4100)^- K^+ \to \eta_c \pi^- K^+] \approx 1.9 \times 10^{-5}$, $J^P = 0^+$ preferred

Strongly suggests: $Z_c(4100) = \eta_c$ embedded in *S* wave in an 'excited pion' $I^G(J^P) = 1^-(0^-)$, $Z_c(4200) = J/\psi$ embedded in the same 'excited pion' $I^G(J^P) = 1^-(0^-)$. Expected:

▶ The same embeddings — HQSS partners, like η_c and $J/\psi \Rightarrow$

 $M[Z_c(4200)] - M[Z_c(4100)] \approx M(J/\psi) - M(\eta_c) = 112 \,\mathrm{MeV}$

► $\Gamma[Z_c(4100) \rightarrow \eta_c \pi] \approx \Gamma[Z_c(4200) \rightarrow J/\psi \pi]$

$$\frac{\mathcal{B}[B^0 \to Z_c(4100)^- K^+]}{\mathcal{B}[B^0 \to Z_c(4200)^- K^+]} \approx \frac{\mathcal{B}[B^0 \to \eta_c \pi^- K^+]}{\mathcal{B}[B^0 \to J/\psi \pi^- K^+]} \bigg|_{M(c\bar{c}\pi) \approx M(Z_c)}$$

HQSS breaking processes

Leading HQSS breaking — M1 chromomagnetic interaction

$$H_{M1}=-rac{1}{2m_{c}}\left(t_{c}^{a}-t_{ar{c}}^{a}
ight)\left(ec{\Delta}\cdotec{B}^{a}
ight)$$

 $\vec{\Delta} = \vec{s}_1 - \vec{s}_2$ spin operator: $\langle {}^1S_0 | \Delta | {}^3S_1 \rangle = \langle {}^3S_1 | \Delta | {}^1S_0 \rangle \Rightarrow$ same coefficient *C* in the HQSS breaking amplitudes:

 $A[Z_c(4100) \rightarrow J/\psi
ho] = C\left(ec{\psi} \cdot ec{
ho}
ight); \quad A[Z_c(4200) \rightarrow \eta_c
ho] = C\left(ec{Z} \cdot ec{
ho}
ight)$

Implies

$$\Gamma[Z_c(4100)
ightarrow J/\psi
ho] pprox 3 \, \Gamma[Z_c(4200)
ightarrow \eta_c
ho]$$

A D F A 同 F A E F A E F A Q A

HQSS breaking in charmonium \sim 10% in the rate ($\psi' \to J/\psi\eta$ vs. $\psi' \to J/\psi\pi\pi$)

Other related processes

Same embedding — the same admixture of excited states $\eta_c(2S)$, $\psi(2S) \Rightarrow$

 $\Gamma[Z_c(4100) \rightarrow \eta_c(2S)\pi] \approx \Gamma[Z_c(4200) \rightarrow \psi(2S)\pi]$

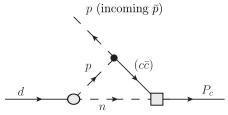
▶ Orbitally excited. P and G conservation allows only $Z_c(4100) \rightarrow \chi_{c1}\pi$ and $Z_c(4200) \rightarrow h_c\pi$

$$\frac{\Gamma[Z_c(4200) \to h_c \pi]}{\Gamma[Z_c(4100) \to \chi_{c1} \pi]} \approx \left(\frac{p_2}{p_1}\right)^3 \approx 1.5$$

(P wave decays. Thus the kinematical difference is more important than in the previous.) Both processes are suppressed by both HQSS and the (orbital) excitation.

Acsessible at PANDA:

Molecules (due to mixing with quarkonium):


- ► X(3872)
- ► X_{c2}(4013) (?)
- ► Other X_{cJ} (??), esp. isosinglet. Not readily accessible in e⁺e⁻, but can appear in p̄p.

Hadro-charmonium:

- I = 1 neutral components
 - ► $Z^0(4050), Z^0(4250) \rightarrow \chi_{c1}\pi^0,$
 - ► $Z_c^0(4100)$ → $\eta_c \pi^0$, ► $Z_c^0(4200)$ → $J/\psi \pi^0$,
 - $\begin{array}{ll} & \to J/\psi\pi \\ & \to Z^0(4430), \\ & \to \psi(2S)\pi^0 \end{array}$
- ► I = 1 charged components can be available with a deuterium target, $\bar{p}n \rightarrow Z_c^-$.
- I = 0 mixing with $c\bar{c}$ or 'direct'
 - $Y(4260)[4220] \rightarrow J/\psi\pi\pi, h_c\pi\pi$ (almost no open charm),
 - $Y(4360) \rightarrow \psi(2S)\pi\pi, h_c\pi\pi$ (almost no open charm)

Hidden-charm pentaquarks at PANDA

Deuterium target: $\bar{p} + d \rightarrow P_c$

Simultaneously for *d* at rest and *p* at rest $\bar{p} + d \rightarrow Pc$ and $\bar{p} + p \rightarrow (c\bar{c})$: $M_{P_c} = M_0$

$$M_0^2 = 2m_{(c\bar{c})}^2 + m_N^2$$

 $M_0 = 4.48 \text{ GeV}$ for $(c\bar{c}) = J/\psi$ and $M_0 = 4.33 \text{ GeV}$ for $(c\bar{c}) = \eta_c$. Compare with $P_c(4450)$.

No need to consider short distance structure in deuteron. BW max cross section: $\sigma(\bar{p}+d) \rightarrow P_c \approx Br[P_c \rightarrow \bar{p}+d] \times 2 \times 10^{-27} \text{cm}^2$ $Br[P_c \rightarrow \bar{p}+d] \approx 0.5 \times 10^{-6} Br[P_c \rightarrow (c\bar{c}) + n] \Gamma[(c\bar{c}) \rightarrow p\bar{p}]/(1 \text{keV})$ $\sim 10^{-7} Br(P_c \rightarrow J/\psi + n) \text{ for } J/\psi, \sim 2.5 \times 10^{-5} Br(P_c \rightarrow \eta_c + n) \text{ for } \eta_c$

Conclusions

- It looks like we (somewhat) understand charmonium and bottomonium below open flavor threshold. The atomic physics of quarkonium.
- What happens above the threshold mostly puzzles.
- ► Molecules, hadroquarkonium, ... Hadronic chemistry.
- ▶ Hybrids *cc* plus gluonic excitations. Nowhere to be seen ...
- At least O(10) extremely interesting tasks (with known, or 'sighted' resonances) for pp at PANDA.

(ロ) (同) (三) (三) (三) (○) (○)

- More possibilities (charged states) if pn could be studied using deuterium target.
- Pentaquarks can possibly be studied in $\bar{p}d$.