

Meson spectroscopy at Gue

Justin Stevens

Observed mesons and baryons well described by 1st principles QCD

But these aren't the only states permitted by QCD

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc.

Phys. Lett. 8 (1964) 214

Observed mesons and baryons well described by 1st principles QCD

But these aren't the only states permitted by QCD

5

m_{J/ų p} [GeV]

Observed mesons and baryons well described by 1st principles QCD

But these aren't the only states permitted by QCD

Do gluonic degrees of freedom manifest themselves in the bound states we observe in nature?

Hybrid mesons and gluonic excitations

- * Excited gluonic field coupled to $q\bar{q}$ pair
- * Rich spectrum of hybrid mesons predicted by Lattice QCD
- * Gluonic field with $J^{PC} = 1^{+-}$ and mass scale $\approx 1-1.5$ GeV

Hybrid mesons and gluonic excitations

- * Excited gluonic field coupled to $q\bar{q}$ pair
- * Rich spectrum of hybrid mesons predicted by Lattice QCD
- * Gluonic field with $J^{PC} = 1^{+-}$ and mass scale $\approx 1-1.5$ GeV
- * "Exotic" ${\rm J}^{\rm PC}$: not simple $q\bar{q}$ from the non-rel. quark model

$$J^{PC} = 0^{+-}, 1^{-+}, 2^{+-} \dots$$

$$\vec{J} = \vec{L} + \vec{S} \\ P = (-1)^{L+1} \\ C = (-1)^{L+S}$$

hybrid meson

* Ideally look for a pattern of hybrid states in multiple decay modes

* Primary goal of the GlueX experiment is to search for and ultimately map out the spectrum of light quark hybrid mesons

Exotic J^{PC} in photoproduction

Production through t-channel "quasi-particle" exchange

Jefferson Lab 12 GeV Upgrade

- * Maximum electron beam energy upgraded from 6 to 12 GeV
- * Provides access to mesons with masses to ~3 GeV

Hall D

(GlueX)

Photon Beam and Tagger Hall D **Pair Spectrometer Photon Tagger Triplet Polarimeter** North LINAC 75 m Photon **Beam Dump Diamond Radiator** Collimator GlueX Electron East ARC select $\Theta < 25 \mu r$ **Beam Dump** Spectrometer polarized photons

Measured Flux

GLUE in Hall D

- * Large acceptance detector for charged and neutral particles (many final states)
- * Orders of magnitude higher statistics than previous photoproduction experiments

forward calorimeter

Exotic J^{PC} in photoproduction

Production through t-channel "quasi-particle" exchange

Non-exotic J^{PC} in photoproduction

Exchange J^{PC} $1^{--}: \omega, \rho$ $1^{+-}: b, h$

- * Begin by understanding non-exotic production mechanism
- Linear photon beam polarization critical to filter out "naturality" of the exchange particle

$\gamma p \rightarrow \pi^0 p$ beam asymmetry Σ

 Beam asymmetry Σ provides insight into dominant production mechanism

$$\Sigma = \frac{|\omega + \rho|^2 - |h + b|^2}{|\omega + \rho|^2 + |h + b|^2}$$

- From experimental standpoint it's easily extended to yp→ηp
 - * No previous measurements!

π^0 and η beam asymmetries

- * Dip in multiple theory predictions not observed
- Indication of vector
 exchange dominance at this energy
- * Additional asymmetry measurements ongoing with this dataset

First 12 GeV publication! Phys. Rev. C 95, 042201(R)

Neutral pseudoscalars: Σ~1, dominated by vector exchange

Neutral pseudoscalars: Σ~1, dominated by vector exchange

π- beam asymmetry

Charged pseudoscalars: more complicated *-t* **dependence**

* Intensity expressed as function of production and decay angles for vector mesons: $\gamma p \to \rho p$

$$W^{0}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\frac{1}{2} (1-\rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0}-1) \cos^{2}\vartheta - \sqrt{2} \operatorname{Re}\rho_{10}^{0} \sin 2\vartheta \cos\varphi - \rho_{1-1}^{0} \sin^{2}\vartheta \cos 2\varphi \right)$$

$$W^{1}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\rho_{11}^{1} \sin^{2}\vartheta + \rho_{00}^{1} \cos^{2}\vartheta - \sqrt{2} \operatorname{Re}\rho_{10}^{1} \sin 2\vartheta \cos\varphi - \rho_{1-1}^{1} \sin^{2}\vartheta \cos 2\varphi \right)$$

$$W^{2}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\sqrt{2} \operatorname{Im}\rho_{10}^{2} \sin 2\vartheta \sin\varphi + \operatorname{Im}\rho_{1-1}^{2} \sin^{2}\vartheta \sin 2\varphi \right)$$

$$W(\cos\vartheta,\varphi,\varphi) = W^{0}(\cos\vartheta,\varphi) - P_{\gamma} \cos(2\varphi)W^{1}(\cos\vartheta,\varphi) - P_{\gamma} \sin(2\varphi)W^{2}(\cos\vartheta,\varphi)$$
Schilling [Nucl. Phy. B, 15 (1970) 397]

 π

* Intensity expressed as function of production and decay angles for vector mesons: $\gamma p \to \rho p$

 P_{γ}

 π

* Intensity expressed as function of production and decay angles for vector mesons: $\gamma p \to \rho p$

$$W^{0}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\frac{1}{2} (1-\rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0}-1)\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\vartheta\cos\varphi - \rho_{1-1}^{0}\sin^{2}\vartheta\cos2\varphi \right)$$
$$W^{1}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\rho_{11}^{1}\sin^{2}\vartheta + \rho_{00}^{1}\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin2\vartheta\cos\varphi - \rho_{1-1}^{1}\sin^{2}\vartheta\cos2\varphi \right)$$
$$W^{2}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin2\vartheta\sin\varphi + \operatorname{Im}\rho_{1-1}^{2}\sin^{2}\vartheta\sin2\varphi \right)$$
$$W(\cos\vartheta,\varphi,\Phi) = W^{0}(\cos\vartheta,\varphi) - P_{\gamma}\cos(2\Phi)W^{1}(\cos\vartheta,\varphi) - P_{\gamma}\sin(2\Phi)W^{2}(\cos\vartheta,\varphi)$$

Schilling [Nucl. Phy. B, 15 (1970) 397]

 Requires control of angular acceptance distributions similar to PWA

$$\ln L = \sum_{i=1}^{N} \ln I(\Omega_i) - \sum_{j=1}^{M} \ln I(\Omega_j) - \int d\Omega I(\Omega) \eta(\Omega)$$

Signal Bkgd. Accept.

Intensity expressed as function of production and decay angles for vector mesons: $\gamma p \rightarrow \rho p$

$$W^{0}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\frac{1}{2} (1-\rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0}-1)\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\vartheta\cos\varphi - \rho_{1-1}^{0}\sin^{2}\vartheta\cos2\varphi \right)$$

$$W^{1}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\rho_{11}^{1} \sin^{2}\vartheta + \rho_{00}^{1} \cos^{2}\vartheta - \sqrt{2} \operatorname{Re} \rho_{10}^{1} \sin 2\vartheta \cos\varphi - \rho_{1-1}^{1} \sin^{2}\vartheta \cos 2\varphi \right)$$

* Natural parity exchange is dominant for ρ , ϕ , and ω

MENU2019 Proceedings arXiv:1908.07275

* Intensity expressed as function of production and decay angles for vector mesons: $\gamma p \to \rho p$

MENU2019 Proceedings arXiv:1908.07275

* Intensity expressed as function of production and decay angles for vector mesons: $\gamma p \to \rho p$

$$W^{0}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\frac{1}{2} (1-\rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0}-1)\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\vartheta\cos\varphi - \rho_{1-1}^{0}\sin^{2}\vartheta\cos2\varphi \right)$$
$$W^{1}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\rho_{11}^{1}\sin^{2}\vartheta + \rho_{00}^{1}\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin2\vartheta\cos\varphi - \rho_{1-1}^{1}\sin^{2}\vartheta\cos2\varphi \right)$$
$$W^{2}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin2\vartheta\sin\varphi + \operatorname{Im}\rho_{1-1}^{2}\sin^{2}\vartheta\sin2\varphi \right)$$
$$W(\cos\vartheta,\varphi,\Phi) = W^{0}(\cos\vartheta,\varphi) - P_{\gamma}\cos(2\Phi)W^{1}(\cos\vartheta,\varphi) - P_{\gamma}\sin(2\Phi)W^{2}(\cos\vartheta,\varphi)$$

Schilling [Nucl. Phy. B, 15 (1970) 397]

Justin Stevens, WILLIAM & MARY 32

- * Enhancement consistent with earlier SLAC measurement, but ~1000x more statistics with early GlueX data
- * Polarization observables will provide further insight into the nature of this enhancement

Early spectroscopy opportunities

 $\gamma p \to \eta \pi^0 p$

GLUE

2.5

2

Preliminary

3

 $M(\pi^0\eta)$ (GeV/c²)

- Previous photoproduction
 data very sparse for channels
 with multiple neutrals particles
- * Preliminary studies are already showing interesting features

1.5

Counts / 10 MeV 3000 2005

2000

1000

0.5

G.

Light quark resonances:

Rest Frame of X where $X \to \eta' \pi^-$

π

Many broad overlapping resonances

X

$\eta\pi/\eta'\pi$ spectroscopy at

$\eta\pi/\eta'\pi$ spectroscopy at

Light quark resonances:

- Many broad overlapping resonances
- Identify different quantum numbers
 via their decay distributions

COMPASS: PLB 740 (2015) 303

$\eta\pi/\eta'\pi$ spectroscopy at

Light quark resonances:

- Many broad overlapping resonances
- Identify different quantum numbers
 via their decay distributions

Need to work with theorists on better models to describe broad structures: Joint Physics Analysis Center

COMPASS: PLB 740 (2015) 303

GSI Seminar

Justin Stevens, WILLIAM & MARY 41

Justin Stevens, WILLIAM & MARY 42

η'π spectroscopy at Gue $\pi^- p \rightarrow \eta' \pi^- p$

Comparable statistical precision to Compass with single decay modes in GlueX dataset

* Different production mechanism and backgrounds to consider

GSI Seminar

Polarization in $\eta\pi$ spectroscopy

Recent work by proposed "Moment Analysis" as model-independent approach

 $I(\Omega, \Phi) = I^0(\Omega) - P_{\gamma}I^1(\Omega)\cos 2\Phi - P_{\gamma}I^2(\Omega)\sin 2\Phi$

* Sensitivity to exotic *P-wave* through polarization

- * Already studying polarization observables for "simple" final states
- * Beginning to identify known mesons in multi-particle final states

Charmonium at JLab

Charmonium at JLab

 $\gamma p \to p e^+ e^-$

GSI Seminar

Justin Stevens, WILLIAM & MARY 52

J/ψ photoproduction at GLUE

PRL 123, 072001 (2019)

Editor's Suggestion! P_c(4440) ơ(γp → J/ψp), nb 10 GlueX SLAC Cornell JPAC P_c⁺(4312) 3/2 BR=2.9% JPAC P_c⁺(4440) 3/2⁻ BR=1.6% 10^{-1} JPAC P_c⁺(4457) 3/2⁻ BR=2.7% 10 9 20 8 E_v, GeV

LHCb

- No evidence of Pc states!
- Model-dependent upper limits at 90% CL (assuming J^P=3/2⁻):
 - Br(P_c(4312) → J/ψ p) < 4.6%
 - Br(P_c(4440) → J/ψ p) < 2.3%
 - Br(P_c(4457) → J/ψ p) < 3.8%
 [ULs scale as (2J+1)]
- Disfavors hadrocharmonium and some molecular models. Pc's could preferentially couple to other channels?
 - Need consistent picture with Λ_b decays

J^{PAC} model: PRD 94, 034002 (2016)

What's next for J/ψ photoproduction

- GlueX "Low intensity" Phase I program completed in 2018
 - * Expect > 1500 J/ ψ on tape
 - Fully utilize beam energy resolution with unbinned fit in E_y and -t
- "High intensity" program to begin in Fall 2019
- Points: GlueX data in J/ψ mass region
- JPAC model: 5% $P_c(4440)$, $J^P = 3/2^-$

Be Target

Sweep

Magnet

Collimators

Tagger

Area

East ARC

GLUE Timeline

- GlueX "Low intensity" Phase-I program completed in 2018
 - Results presented here represent 21 pb⁻¹ of polarized luminosity
 - Full statistics currently under analysis will add an additional 90 pb⁻¹
 - Identifying known mesons and begin exotic searches
- * "High intensity" program to begin in Fall 2019

Phase-I dataset: 2016-2018 250 B events and ~8 PB of data

- * Lattice predicts strange and light quark content for mesons
- Search for a pattern of hybrid states in many final states
- Requires clean identification of charged pions and kaons

	Approximate	J^{PC}	Final States
	Mass (MeV)		
π_1	1900	1^{-+}	$\omega\pi\pi^{\dagger}, 3\pi^{\dagger}, 5\pi, \eta 3\pi^{\dagger}, \eta'\pi^{\dagger}$
η_1	2100	1^{-+}	$4\pi, \eta 4\pi, \eta \eta \pi \pi^{\dagger}$
η_1'	2300	1^{-+}	$KK\pi\pi^{\dagger}, KK\pi^{\dagger}, KK\omega^{\dagger}$

Strangeness program: decay patterns

* Experimentally infer quark flavor composition through branching ratios to strange and non-strange decays

 $\frac{\mathcal{B}(f_2'(1525) \to \pi\pi)}{\mathcal{B}(f_2'(1525) \to KK)} \approx 0.009$

 $\frac{\mathcal{B}(f_2(1270) \to \pi\pi)}{\mathcal{B}(f_2(1270) \to KK)} \approx 20$

- Consistent with lattice QCD mixing angle for 2⁺⁺, and predictions for hybrids
- * Need capability to detect strange and non-strange to infer hybrid flavor content

GSI Seminar

 2^{+-} 3^{+-} 1^{-+} $u\bar{u} + dd$ $S\overline{S}$ 9^{++} PRD 88 (2013) 094505

- * The GlueX DIRC (Detection of Internally Reflected Cherenkov light) provides new K/π separation and will use components of the BaBar DIRC
- * Installation and commissioning this year, physics data in 2019!

- * The GlueX DIRC (Detection of Internally Reflected Cherenkov light) provides new K/π separation and will use components of the BaBar DIRC
- * Installation and commissioning this year, physics data in 2019!

- * February 2019: 10 days of GlueX beamtime with 1/2 of DIRC installed for commissioning
- * Samples of exclusive ρ and ϕ production provide pure samples of π and K tracks for PID studies

GLUE DIRC commissioning

- February 2019: 10 days of GlueX beamtime with 1/2 of DIRC installed for commissioning
- * Samples of exclusive ρ and ϕ production provide pure samples of π and K tracks for PID studies
- * Calibration and alignment in progress, but initial reconstruction studies show clear π/K separation

 π/K separation power @ 3 GeV

Summary

- * The Gue experiment is commissioned and the initial meson program is well underway
- First results aim at understanding the meson photoproduction mechanism through beam asymmetries and other polarization observables
- An upgrade is in progress to improve the identification of charged kaons to enhance the strange meson spectroscopy program

