

Towards understanding the XYZ stateslessons from their lineshapes

Christoph Hanhart

Forschungszentrum Jülich

Key reference: Review article

F. K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, "Hadronic molecules", arXiv:1705.00141 [hep-ph]

Setting the stage ...

- \rightarrow All exotic candidates above
Canen flavor thresholds open flavor thresholds
- \rightarrow Many (not all) states near
S-waye thresholds of narr ^S-wave thresholds of narrow**States** Filin et al., PRL 105, 019101 (2010)
Cun et al., PRD84, 014013 (2011) Guo et al., PRD84, 014013 (2011)
- \rightarrow States not near all those
thresholds thresholds
- \rightarrow Lightest negative parity exotic
The Containment of the Containst Containst Containst Containst Containst Containst Containst Containst Contain $(Y(4260))$ significantly heavier than lightest positive parity exotics $(X(3872) \; \textbf{\&} \; Z_c(3900))$

... does $Y(4008)$ exist?

Hybrid

 \rightarrow \rightarrow Compact with active gluons and $\bar{Q}Q$

Hadro-Quarkonium
 \rightarrow Compact ($\bar{Q}Q$) surrounded by light quarks

Hadronic-Molecule

- \rightarrow $\rightarrow \;$ Extended object made of $(\bar{Q}q)$ and $(Q\bar{q})$
- **Tetraquark**
 \rightarrow Compact object formed from (Qq) and $(\bar{Q}\bar{q})$
 Hadro-Quarkonium
 \rightarrow Compact $(\bar{Q}Q)$ surrounded by light quarks
 Hadronic-Molecule
 \rightarrow Extended object made of $(\bar{Q}q)$ and $(Q\bar{q})$

Bohr ra Bohr radius = $1/\sqrt{2\mu E_b}$ $\gg 1$ fm \gtrsim confinement radius

for near threshold states

Hadronic Molecules

- \rightarrow are few-hadron states, bound by the strong force
- \rightarrow do exist: light nuclei.
P.a. deuteron as mn . e.g. deuteron as pn & hypertriton as Λd bound state
- \rightarrow are located typically close to relevant continuum threshold;
e q for $E_B = m_1 + m_2 = M$ e.g., for $E_B = m_1 + m_2 - M$
	- $\varepsilon \varepsilon_B^{\rm deuteron}$ = 2.22 MeV
	- $\varepsilon \vDash_B^\text{hypertriton} = (0.13 \pm 0.05)$ MeV (to Λd)

 \rightarrow can be identified in observables (Weinberg compositeness):
 $\frac{2}{3}$

$$
\frac{g_{\text{eff}}^2}{4\pi} = \frac{4M^2\gamma}{\mu}(1-\lambda^2) \rightarrow a = -2\left(\frac{1-\lambda^2}{2-\lambda^2}\right)\frac{1}{\gamma}; \quad r = -\left(\frac{\lambda^2}{1-\lambda^2}\right)\frac{1}{\gamma}
$$

where $(1 - \lambda^2)$ =probability to find molecular component in bound state wave function

Are there mesonic molecules?

Properties of molecular states

- \rightarrow Potential the strongest in S-waves
- \rightarrow Potential i.g. contains short and long ranged contributions
A A Filip et al. PBL 105 (2010) 01

A. A. Filin et al., PRL 105 (2010) 019101

- \rightarrow Interaction channel dependent
	- ⊳ isovector meson exchanges give

 $\langle\vec{\tau}_{(1)}$ · $\cdot \vec{\tau}_{(2)}\rangle = 2I(I+1)$ −3

Thus: Either $I=1$ or $I=0$ states (not both) for given $J^{PC},$ if, e.g., ρ -exchange or π -exchange significant M. B. Voloshin & L. B. Okun, JETPL 23 (1976) 333; N. A. Tornqvist, PRL 67 (1991) 556.

- ⊳ Switching C also induces sign change
- ⊳ Potentially large coupled channel effects
- \rightarrow Interaction particle dependent (no $\pi D\bar{D}$ vertex)

Getting more concrete

Example: 1/2⁺ multiplet $\{D, D^*\}$ * } and 3/2⁻ multiplet $\{D_1, D_2\} \rightarrow$

 $3^{-\pm}$: D^*D_2 $0^{-\pm}$: D^*D_1 $2^{-\pm}$: $D^*D_1 - D^*D_2 - DD_2$ $1^{-\pm}$: $DD_1 - D^*D_1 - D^*D_2$ * D_1 − D^* * D_2 (Y(4260), Y(4360) (I=0)) 2^{++} : D^*D^* 1^{++} : DD* (X(3872) (I=0)) 1^{+-} : DD^* 0^{++} : $DD-D^*D^*$; $-D^*$ * $D^* (Z_c(3900)^+, Z_c(4020)^+ (I=1))$

- \rightarrow Explains mass gap between $J^P = 1^+$ and 1^- states: M_{Y} $Y(4260)$ ⁻ $M_{X(3872)}{=}388$ MeV $\simeq M_{D_1(2420)}{-}$ $M_{D^*}{=}410\ \mathsf{MeV}$
- \rightarrow Predicts, e.g., $M(0^-)$
if it oxiete − $M(1^-)\simeq M_{D^*} M_D\simeq+100$ MeV, if it exists
	- c.f. for hadrocharmonium: $M(0^{−})$ − $M(1^-) \simeq -100~\text{MeV}$

M. Cleven et al., PRD 92 (2015) 014005

VI JÜLICH Example: $\{B,B^*\}$ and $\{\bar{B},\bar{B}^*\}$ scatt.

Baru et al., arXiv:1704.07332

- \rightarrow Potential: contact terms + 1- π and 1- η -exchange
In the symmetry limit one gets (2 parameters) In the symmetry limit one gets (2 parameters)
- \rightarrow No new parameter from meson exchange: $g_b = g_c \approx 0.57$
PDG (from $D^* \rightarrow D\pi$); ALPHA coll. PLB740 (2015) 278 $\mathsf{PDG}\ (\mathsf{from}\ D^*\to D\pi); \mathsf{ALPHA}\ \mathsf{coll}\ \mathsf{PLB740}\ (2015)\ 278\ (\mathsf{lattice})$
- \rightarrow All partial waves need to be included Baru et al. PLB 763 (2016) 20
- \rightarrow 3 (0⁺⁺, 1⁺⁺, 2⁺⁺) states degenerate with Z_b : W_{bJ}
1 (0⁺⁺) degenerate with Z' [,] W' 1 (0^{++}) degenerate with Z_b^\prime : W_{b0}^\prime Bondar et al., PRD 84 (2011) 054010; Voloshin, PRD 84 (2011) 031502; Mehen & Powell, PRD 84 (2011) 114013; Nieves & Valderrama, PRD 86 (2012) 056004.
- $\rightarrow~Z_b$ and Z'_b degenerate only with additional symmetry $\,$ M. B. Voloshin, PRD 93 (M. B. Voloshin, PRD 93 (2016) 074011
- → Spin symmetry violation via $M_D \neq M_{D^*}$ strongly enhanced
wia S-D coupling → Additional decay channels $\mathsf{via}\ S\text{-}D$ coupling \to Additional decay channels
Albaladejo et al., EPJC 75 (2015) no.11, 547; Baru et Albaladejo et al., EPJC 75 (2015) no.11, 547; Baru et al. PLB 763 (2016) 20

Spin symmetry violation

Baru et al., arXiv:1704.07332When lifting spin symmetry, specific pattern emerges:

Spin symmetry violation

Remarks on decays ...

 \rightarrow Natural explanation for $Y(4260) \rightarrow \pi Z_c(3900)$ and
Q. Wang, C. H., Q. Zhao, PRL111 (2

Q. Wang, C. H., Q. Zhao, PRL111 (2013) no.13, 132003

 $\textsf{prediction of}~Y(4260)\rightarrow\gamma X(3872)~$ F.-K. Guo et al., PLB 725 (2013) 127-133
Confirmed at BESIII Ablikim et al. PBL 112 (2014), 092001 confirmed at BESIII Ablikim et al. PRL ¹¹² (2014), ⁰⁹²⁰⁰¹

 \rightarrow Not all observables sensitive to molecular component!
A n $X(3872) \rightarrow \gamma g/(nS)$ has leading order counter term e.g. $X(3872)\to\gamma\psi(nS)$ has leading order counter term

Towards understanding the XYZ stateslessons from their lineshapes – p. 10/22

Production at high P_T

 $\sigma(\bar{p}p\rightarrow X)$

- ∼ $\left|\int d^3{\bf k}\langle X|D^0\bar{D}^{\ast0}({\bf k})\rangle\langle D^0\bar{D}^{\ast0}({\bf k})|\bar{p}p\rangle\right|^2$
- ≃ $\left|\int_{\mathcal{R}}d^{3}\mathbf{k}\langle X|D^{0}\bar{D}^{*0}(\mathbf{k})\rangle\langle D^{0}\bar{D}^{*0}(\mathbf{k})|\bar{p}p\rangle\right|^{2}$
- ≤ $\leq\quad \int_{\cal R} d^3{\bf k} \, |\Psi({\bf k})|^2 \int_{\cal R} d^3{\bf k} \, \bigl| \langle D^0 \bar{D}^{*0}({\bf k})|\bar{p}p\rangle\bigr|^2 \nonumber \ \leq\quad \int_{\cal R} d^3{\bf k} \, |\Psi({\bf k})|^2 \int_{\cal R} d^3{\bf k} \, \bigl| \langle D^0 \bar{D}^{*0}({\bf k})|\bar{p}p\rangle\bigr|^2$ ≤ $\leq \quad \int_{\cal R} d^3{\bf k} \left |\langle D^0 \bar{D}^{*0}({\bf k})|\bar{p}p\rangle \right |^2 \ ,$

Bignamini et al., PRL 103 (2009) 162001

R must be large enough to saturate wave functionBignamini et al.: $\mathcal{R} \sim \sqrt{mE_b} \sim 40$ MeV \rightarrow Test on deuteron
Albaladeio et al Albaladejo et al. subm. to PRLOne finds: $\mathcal{R} \sim 400$ MeV using Herwig (Pythia) $\mathcal{R}{\sim}60$ MeV \rightarrow $\sigma_X{\sim}0.1(0.04)$ nb $\mathcal{R}{\sim}300$ MeV \rightarrow $\sigma_X{\sim}13(4)$ nb † $\mathcal{R}{\sim}600$ MeV \rightarrow $\sigma_X{\sim}55(15)$ nb † $^\dagger\colon D^+D^-$ channel included

vss $\sigma_{\rm exp.}^{\rm CMS} \sim 13-39$ nb \rightarrow fully consistent!

Interim Summary & Perspectives

- \rightarrow The hadronic molecule picture can explain naturally many
properties of the XYZ states properties of the XYZ states
- \rightarrow Spin symmetry violations predicted strikingly different for
different scenarios different scenarios(more pronounced for negative parity states)

M. Cleven et al., PRD 92 (2015) 01 4005

- \rightarrow To disentangle compact tetraquarks from hadronic
molecules existence of $V(4008)$ must be clarified molecules, existence of $Y(4008)$ must be clarified
- \rightarrow We need information for various quantum numbers for both
bottomonia and charmonia bottomonia and charmonia
- Are there observables directly sensitive to molecular component?

 $Yes \rightarrow lineshapes$ in continuum channel

Interlude: ^S-matrix

 \rightarrow \rightarrow For real $s < s_{\min}^{\text{thres}}, S$ is real \rightarrow Branchpoint at $s = s^{\text{thres}}$

 $\rightarrow S(s^*) = S^*(s) \longrightarrow$ pole at s implies pole at s^*

For narrow resonances:

In resonance region: only lower pole mattersAt threshold: both poles important!

For broad resonances:

always both important

Keep track of the cuts!

Poles on real axis are called virtual $(2^{\rm nd})$ or bound $(1^{\rm st})$ states

For shallow bound states

$$
T_{\text{NR}}(E) = \frac{g_0^2}{E+E_B+g_0^2\mu/(2\pi)(ik+\gamma)},\,\,g_0^2 = \frac{2\pi\gamma}{\mu^2}\left(\frac{1}{\lambda^2}-1\right)
$$

where $k=$ $\sqrt{2\mu E}$ and $\gamma=$ $\sqrt{2\mu E_B}$. In addition

and λ^2 =Prob. to find compact comp. in wf.

- $\rightarrow \; \lambda^2 = 1 \Longrightarrow$ Compact state with $g\,$ 2 $\rm 0$ $\frac{2}{0} = 0$
- $\lambda^2 = 0 \Longrightarrow$ Molecular state with g
dimensional analysis: $a^2 \sqrt{2\pi}$ $2/1.2_u$ 2 $\bar{0}=\infty$ dimensional analysis: g 2 $\bar{0} \sim$ $2\pi\beta/\mu^2$ with β = $^{1}\!/\mathrm{range}$ of forces $\gg\gamma$

Importance of two-body cut measures molecular admixture

This information is contained in the line shapes ...

For virtual states: $\gamma \rightarrow -\gamma$; λ^2 no longer prob.

Heavy molecules decay also into

- \rightarrow heavy quarkonium + light quarks e.g. $Y(4260) \rightarrow J/\psi \pi \pi$ and $X(3872) \rightarrow J\psi \pi \pi$
- \rightarrow decay products of constituents (if those are unstable)
 \rightarrow decay products of constituents (if those are unstable) e.g. $Y(4260) \rightarrow D_1 \bar{D} \rightarrow [D^*]$ ${}^*\pi]\bar D$ (to be found ...)
- \rightarrow lighter open flavor channels e.g. $W_{b2} \rightarrow D\bar{D}/D\bar{D}^*$ * (to be found ...)
- Accordingly the lineshapes <mark>are more rich and more telling</mark>
- However, challenging experimentally, since this calls for
	- → good statistics
	- \rightarrow high resolution

Coupling to inelastic channels

 \rightarrow signal in inelastic channel(s) for very near threshold state

Lineshapes of $Y(4260)$

talk by Zhentian SUN for BESIII this morning

IF the $Y(4260)$ were a

 $D_1\bar{D}$ molecule

- \rightarrow it MUST have a large coupling to this channel
- \rightarrow this must have an impact on lineshapes

... although it is a not so near threshold state

Cleven et al., PRD90 (2014) 074039; Data: Belle, PRD80 (2009) 091101

$\underline{Y(4260)} \rightarrow \underline{D_1\bar{D}} \rightarrow [\underline{D^*\pi}]\bar{D}$
Soon there will be new data from BESIII Soon there will be new of

talk by C.-Z. Yuan for the BESIII Collaboration (2017)

that confirm the general features!

Strong support for molecular picture of $Y(4260)$

Summary and Perspectives

- \rightarrow Lineshapes contain crucial information about the molecular component of a given resonance component of ^a given resonance
- \rightarrow Especially, there naturally are distortions by (nominal)
continuum threshold continuum threshold
- What needs to be done?
	- \rightarrow Lineshapes need to be measured with high resolution and
and statistics for all exotics good statistics for all exotics
	- \rightarrow Especially, for the additional channels mentioned in the first
nart of the talk part of the talk
- Great opportunities for LHCb and PANDA

Thank you very much for your attention