

Hyperon Spectroscopy and Dynamics with PANDA at FAIR

Karin Schönning, Uppsala University, for the PANDA collaboration

Hadron Physics Seminar, GSI, Germany, June 29 2016

UPPSALA UNIVERSITET

Outline

- Introduction
- The PANDA experiment @ FAIR
- Part I: Hyperon Spectroscopy
- Part II: Hyperon spin dynamics
- Summary
- Time-line

UPPSALA UNIVERSITET

Introduction

Missing in the Standard Model of particle physics:

A complete understanding of the strong interaction.

- Short distances pQCD rigorously and successfully tested.
- Charm scale and above: pQCD fails, no analytical solution possible.

Introduction

- Light quark (*u*, *d*) systems:
 - Highly non-perturbative interactions.
 - Relevant degrees of freedom are hadrons.
- Systems with strangeness
 - − Scale: $m_s \approx 100 \text{ MeV} \sim \Lambda_{\text{QCD}} \approx 200 \text{ MeV}$.
 - Relevant degrees of freedom?
 - Probes QCD in the confinement domain.
- Systems with charm
 - Scale: m_c ≈ 1300 MeV.
 - Quark and gluon degrees of freedom more relevant.
 - By comparing strange and charmed hyperons we learn about QCD at two different energy scales.

Why hyperons?

Hyperon Spectroscopy

- New baryon states?
- Properties of already known states.
- Symmetries in the observed spectrum?

Why hyperons?

Hyperon Spectroscopy

- New baryon states?
- Properties of already known states.
- Symmetries in the observed spectrum?

Hyperon Spin Dynamics

- Reaction mechanism at different energy scales.
- The role of spin in the strong interaction.
- CP violation

The PANDA experiment at FAIR

SIS 100/300 EV SIS18 **30 GeV Protons** p-Linac HESR Cu Target p/s @ 3 GeV 10^{7} PANDA ccelerating RESR/CR Collecting **Facility for Antiproton** Accumulating and Ion Research Precooling 100m

UPPSALA UNIVERSITET

The PANDA experiment at FAIR

The High Energy Storage Ring (HESR)

- Anti-protons within 1.5 GeV/c < p_{pbar} < 15 GeV/c (2.0 < \sqrt{s} < 5.5 GeV)
- Internal targets
 - Cluster jet and pellet $(\bar{p}p)$
 - Foils $(\bar{p}A)$
- High Resolution Mode (HESRr)
 - $-L = 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$
 - $\Delta p/p < 5.10^{-5}$
 - stochastic + electric cooling < 9 GeV/c
- High Luminosity Mode
 - $-L = 2.10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
 - Δp/p ~ 10⁻⁴
 - Stochastic cooling
- Modularized Start Version
 - L = 10³¹ cm⁻² s⁻¹

Target Spectrometer

• 4π coverage

Precise tracking

Interaction point

Beam

• PID

UPPSALA

UNIVERSITET

Calorimetry

- Vertex detector
- Modular design
- Time-based data acquisition with software trigger

9

Dipole

Forward Spectrometer

Part I: Hyperon Spectroscopy

Baryons and the quark model

- 1950's and 1960's: a multitude of new particles discovered \rightarrow obvious they could not all be elementary.
- 1961: Eight-fold way, organising spin $\frac{1}{2}$ baryons into octets and spin $\frac{3}{2}$ into a decuplet as a consequence of SU(3) flavour symmetry.
- 1962: Discovery of the predicted Ω⁻ demonstrates the success of the Eight-fold way.

Baryons and the quark model

- The simple (constituent) quark model* was successful in classifying hadrons and describing static properties of hadrons.
- Unable to explain *e.g.*
 - Spin structure of the nucleon.
 - Flavour asymmetry of the nucleon sea.
 - Certain features of the light baryon spectrum**.

*PR 125 (1962) 1067 **PRD 58 (1998) 094030

Baryons and the quark model

- The simple (constituent) quark model* was successful in classifying hadrons and describing static properties of hadrons.
- Unable to explain *e.g.*
 - Spin structure of the nucleon.
 - Flavour asymmetry of the nucleon sea.
 - Certain features of the light baryon spectrum**.

The challenging task of baryon spectroscopy

*PR 125 (1962) 1067 **PRD 58 (1998) 094030

Light baryon spectroscopy

A lot was learned from the great progress in light baryon spectroscopy (pion beams, photoproduction).

Open questions regarding the excited light baryon spectrum:*

- Missing states?
- Level ordering?
- Parity doublets?

Degrees of freedom and effective forces?

- 3-quark?
- Quark-diquark?
- Meson-baryon?

*EPJA 48 (2012) 127

Light baryon spectroscopy

Missing states: # of observed states < # of predicted states

- Because there are no such states
- or because they do not couple to $N\pi$ final states?

Strange and charmed hyperons

What happens if we replace one of the light quarks in the proton with one - or many heavier quark(s)?

Excited strange hyperon spectrum:

- SU(6) x O(3) classification (spin, flavour and *L*).
- Very scarce data bank on double and triple strangeness.
- Octet ± partners of N*?
 Only a few found
- Decuplet Ξ* and Ω* partners of Δ*?
 - Nothing found

J^P	(D,L^P_N)	S	Octet n	nembers		Singlets
1/2+	$(56,0_0^+)$	1/2 N(939)	A(1116)	$\Sigma(1193)$	Ξ(1318)	
$1/2^+$	$(56,0^+_2)$	1/2 N(1440)	A(1600)	$\Sigma(1660)$	Ξ(?)	
$1/2^{-}$	$(70,1_1^-)$	1/2 N(1535)	A(1670)	$\Sigma(1620)$	Ξ(?)	A(1405)
$3/2^{-}$	$(70,1_1^-)$	1/2 N(1520)	A(1690)	$\Sigma(1670)$	Ξ(1820)	A(1520)
$1/2^{-}$	$(70,1_1^-)$	3/2 N(1650)	A(1800)	$\Sigma(1750)$	Ξ(?)	
$3/2^{-}$	$(70,1_{1}^{-})$	3/2 N(1700)	A(?)	$\Sigma(?)$	Ξ(?)	
$5/2^{-}$	$(70,1_{1}^{-})$	3/2 N(1675)	A(1830)	E(1775)	三 (?)	
$1/2^+$	$(70,0^+_2)$	1/2 N(1710)	A(1810)	$\Sigma(1880)$	Ξ(?)	Λ(?)
$3/2^{+}$	$(56,2^+_2)$	1/2 N(1720)	A(1890)	$\Sigma(?)$	Ξ(?)	
$5/2^{+}$	$(56,2^+_2)$	1/2 N(1680)	A(1820)	$\Sigma(1915)$	Ξ(2030)	
$7/2^{-}$	$(70, 3^{-}_{3})$	1/2 N(2190)	A(?)	$\Sigma(?)$	Ξ(?)	A(2100)
9/2-	$(70,3^{-}_{3})$	3/2 N(2250)	A(?)	$\Sigma(?)$	Ξ(?)	
9/2+	$(56, 4^+_4)$	1/2 N(2220)	A(2350)	$\Sigma(?)$	Ξ(?)	
			Decuplet	members		
$3/2^{+}$	$(56,0^+_0)$	3/2 (1232)	$\Sigma(1385)$	Ξ(1530)	Ω(1672)	
$3/2^{+}$	$(56,0^+_2)$	3/2 ∆(1600)	$\Sigma(?)$	E(?)	$\Omega(?)$	

$3/2^{+}$	$(56,0^+_0)$	3/2 (1232)	$\Sigma(1385)$	$\Xi(1530)$	$\Omega(1672)$
$3/2^{+}$	$(56,0^+_2)$	3/2 (1600)	$\Sigma(?)$	Ξ(?)	Ω(?)
$1/2^{-}$	$(70,1_1^-)$	1/2 (1620)	$\Sigma(?)$	Ξ(?)	
$3/2^{-}$	$(70,1_1^-)$	1/2 \$\Delta(1700)\$	$\Sigma(?)$	Ξ(?)	$\Omega(?)$
$5/2^{+}$	$(56,2^+_2)$	3/2 (1905)	$\Sigma(?)$	Ξ(?)	$\Omega(?)$
7/2+	$(56,2^+_2)$	3/2 (1950)	$\Sigma(2030)$	Ξ(?)	Ω(?)
$11/2^+$	$(56, 4_4^+)$	3/2 (2420)	$\Sigma(?)$	Ξ(?)	Ω(?)

- Are the states missing
 - because they are not there
 - or because previous experiments haven't been optimal for multistrange baryon search?
- PDG note on Ξ hyperons:
 - *"...nothing of significance on Ξ resonances has been added since our 1988 edition."*

J^P	(D,L^P_N)	S	Octet n	nembers		Singlets
1/2+	$(56,0_0^+)$	1/2 N(939)	A(1116)	$\Sigma(1193)$	Ξ(1318)	
$1/2^{+}$	$(56,0^+_2)$	1/2 N(1440)	A(1600)	$\Sigma(1660)$	Ξ(?)	
$1/2^{-}$	$(70,1_1^-)$	1/2 N(1535)	A(1670)	$\Sigma(1620)$	Ξ(?)	A(1405)
$3/2^{-}$	$(70,1_1^-)$	1/2 N(1520)	A(1690)	$\Sigma(1670)$	Ξ(1820)	A(1520)
$1/2^{-}$	$(70,1_1^-)$	3/2 N(1650)	A(1800)	$\Sigma(1750)$	Ξ(?)	
$3/2^{-}$	$(70,1_1^-)$	3/2 N(1700)	Λ(?)	$\Sigma(?)$	Ξ(?)	
$5/2^{-}$	$(70,1_1^-)$	3/2 N(1675)	A(1830)	$\Sigma(1775)$	三(?)	
$1/2^{+}$	$(70,0^+_2)$	1/2 N(1710)	A(1810)	$\Sigma(1880)$	Ξ(?)	A(?)
$3/2^{+}$	$(56, 2^+_2)$	1/2 N(1720)	A(1890)	$\Sigma(?)$	Ξ(?)	
$5/2^{+}$	$(56, 2^+_2)$	1/2 N(1680)	$\Lambda(1820)$	$\Sigma(1915)$	$\Xi(2030)$	
7/2-	$(70, 3^{-}_{3})$	1/2 N(2190)	A(?)	$\Sigma(?)$	Ξ(?)	A(2100)
9/2-	$(70, 3^{-}_{3})$	3/2 N(2250)	Λ(?)	$\Sigma(?)$	Ξ(?)	
9/2+	$(56, 4^+_4)$	1/2 N(2220)	A(2350)	$\Sigma(?)$	Ξ(?)	

			L	Decuplet	members	
3/2+	$(56,0^+_0)$	3/2	∆(1232)	£(1385)	Ξ(1530)	Ω(1672)
3/2+	$(56,0^+_2)$	3/2	∆(1600)	$\Sigma(?)$	Ξ(?)	Ω(?)
$1/2^{-}$	$(70,1_{1}^{-})$	1/2	<i>∆</i> (1620)	$\Sigma(?)$	Ξ(?)	Ω(?)
$3/2^{-}$	$(70,1_1^-)$	1/2	$\Delta(1700)$	$\Sigma(?)$	Ξ(?)	Ω(?)
$5/2^{+}$	$(56, 2^+_2)$	3/2	∆(1905)	$\Sigma(?)$	Ξ(?)	 <i>Ω</i> (?)
7/2+	$(56, 2^+_2)$	3/2	∆(1950)	$\Sigma(2030)$	三(?)	 <i>Ω</i> (?)
11/2+	$(56,4_4^+)$	3/2	⊿(2420)	$\Sigma(?)$	Ξ(?)	\$\$(?)

Baryon spectroscopy world-wide

- A lot of previous and ongoing activity in nucleon spectroscopy (CLAS @ JLAB, CBELSA/TAPS)
- Charmed hyperons often by-product at b-factories (BaBar, Belle, CLEO, LHCb)

• Gap to fill in the strange sector!

- LHCb
 - Inclusive production in $pp \rightarrow Y^*X$
 - Spin & parity determination require known initial state
 - \rightarrow use Λ_b decays \rightarrow lower rates.
- BES III
 - Hyperons from e.g. $J/\psi \rightarrow Y^* \overline{Y}^*$ and $\psi' \rightarrow Y^* \overline{Y}^*$
 - \rightarrow small BR \rightarrow low event rates.
- Belle II
 - Hyperons from Y(nS) decays
 - \rightarrow small BR \rightarrow low event rates.
 - Belle: only small Ξ*(1820) peak on top of large ΛK background.

- CLAS12 and GlueX @ JLAB:
 - Hyperons from $\gamma p \rightarrow \Xi^* + 2K^+$, $\gamma p \rightarrow \Omega^* + 3K^+$.
 - Probably low cross section \rightarrow low rates.
- Hall D K_L @ JLAB
 - Hyperons from $K_L p \rightarrow K^+ \Xi^{*-}$.
 - Large background from $K_L p \rightarrow K^+ X$.
- JPARC
 - Hyperons from $K^{-} p \rightarrow K^{+} \Xi^{*-}, K^{-} p \rightarrow 2K^{+} \Omega^{*-}$
 - Identification by missing mass technique \rightarrow no spin-parity determination of Y^{*} .
 - Large acceptance detector planned, design and financing not clear.

- PANDA @ FAIR:
 - Hyperons from $\bar{p}p \rightarrow \bar{Y}^*Y, \rightarrow \bar{Y}Y^*$.
 - Large σ : ~ 1 μb for Ξ^* , 0.01-0.1 μb for Ω^* .
 - No extra mesons in the final state needed for strangeness conservation.
 - Symmetry in hyperon and antihyperon observables.
 - Large acceptance detector for exclusive measurements \rightarrow low background.
 - All decay modes charged and neutral accessible.

- PANDA @ FAIR:
 - Hyperons from $\bar{p}p \rightarrow \bar{Y}^*Y, \rightarrow \bar{Y}Y^*$.
 - Large σ : ~ 1μ*b* for Ξ^{*}, 0.01-0.1 μ*b* for Ω^{*} (?)
 - No extra mesons in the final state needed for strangeness conservation.
 - Symmetry in hyperon and antihyperon observables.
 - Large acceptance detector for exclusive measurements \rightarrow low background.
 - All decay modes charged and neutral accessible.

PANDA is a strangeness factory: Can fill the gap in the strange sector!

UPPSALA UNIVERSITET

Feasibility study of $\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^{*-}(1820)$

,E-(1820)

- $p_{beam} = 4.6 \text{ GeV/c}$
- Consider the $\Xi^{*-}(1820) \rightarrow \Lambda$ K decay, assume BR = 100%

р

- Assume $\sigma = 1 \ \mu b$
- Simplified MC framework
- Day One luminosity: 10³¹cm⁻²s⁻¹
- Results:
 - ~30 % inclusive efficiency for $\Xi^{*-}(1820)$
 - ~5 % exclusive efficiency for $\overline{\Xi}^+ \Xi^{*-}(1820)$
 - Low background level
 - ~15000 exclusive events / day

J. Pütz, talk at FAIRNESS²²2016

 π_{γ}^{+}

► π⁺,

·<u>Λ</u>₀

р

Time-line, baryon spectroscopy with PANDA

- PANDA physics from **Day One**:
 - Single- and double strange hyperons (Λ^* , Σ^* and Ξ^*)
 - Light baryons (N^*, Δ^*)
- First years of PANDA:
 - Triple strange hyperons (Ω^*)
- Long-term projects with high luminosity:
 - Single charm baryons ($\Lambda_{c}^{\ *}$, $\Sigma_{c}^{\ *})$
 - Hidden charm baryons $(N_{c\bar{c}})$

Time-line, baryon spectroscopy with PANDA

- PANDA physics from **Day One**:
 - Single- and double strange hyperons (Λ^* , Σ^* and Ξ^*)
 - Light baryons (N^*, Δ^*)
- First years of PANDA:
 - Triple strange hyperons (Ω^*)
- Long-term projects with high luminosity:
 - Single charm baryons ($\Lambda_{c}^{\ *}$, $\Sigma_{c}^{\ *})$
 - Hidden charm baryons $(N_{c\bar{c}})$

Clarify the pentaquark situation?

Part II: Hyperon spin dynamics

Or: what can we learn from looking into detail how known hyperons are produced?

UPPSALA UNIVERSITET

Hyperons from *pp* and *pA* reactions

- Polarization a result of interfering amplitudes.
- In hadronic reactions, many contributing sub-processes.
- High energies: total polarization should be 0.
- Data: hyperons produced polarized at high energies
 → contrast to naïve expectations.
- Many contributing amplitudes

 → difficult to pinpoint the source_{0.2}
 of polarization.

Hyperons from $\bar{p}p$ reactions

- Hyperons and anti-hyperons can be produced at low energies
 → fewer amplitudes contributing.
- Symmetry in hyperon and anti-hyperon observables.
- Polarization + other spin observables powerful tools for testing models of production dynamics and structure.

Hyperons from $\bar{p}p$ reactions

Available models based on

i) constituentquark-gluons*

ii) hadrons**

ii) a combination ***

*PLB 179 (1986) 15; PLB 165 (1985) 187; NPA 468 (1985) 669; _** PR**C** 31(1985) 1857; PLB179 (1986) 15; PLB 214 (1988) 317; *** PLB 696 (2011) 352.

Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

- Vector polarisation P the most straight-forward observable for spin $\frac{1}{2}$ hyperons.
- Strong interactions: normal to the production plane (y-direction)

UPPSALA UNIVERSITET

Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

Polarisation

Accessible by the parity violating decay: Decay products preferentially emitted along the spin of the hyperon.

> $\Lambda \rightarrow p\pi^{-}$: Proton angular distribution

> $I(\cos\theta_{\rm p}) = N(1 + \alpha P_{\Lambda} \cos\theta_{\rm p})$

 P_{Λ} : polarisation

 α = 0.64 asymmetry parameter

Spin observables for spin $\frac{1}{2}$ hyperons

Polarised Particle	None	Beam	Target	Both
None	I_{0000}	A 2000	A_{0j00}	A_{ij00}
Scattered	$P_{00\mu0}$	$D_{i0\mu0}$	$K_{0j\mu0}$	$M_{ij\mu0}$
Recoil	$P_{000\nu}$	$K_{i00\nu}$	$D_{0j0\nu}$	N _{i j0v}
Both	$C_{00\mu\nu}$	$C_{i0\mu\nu}$	$C_{0j\mu\nu}$	$C_{ij\mu\nu}$

In the $\overline{p}p \rightarrow \overline{Y}Y$ reaction there are 256 spin variables.

If the decay product of the hyperon is a hyperon, e.g. $\Xi \rightarrow \Lambda \pi$, more information can be obtained from the decay protons of the Λ .

The Ω hyperon is more complicated.

- Spin $\frac{1}{2}$: **3** polarisation parameters: r_{-1}^{1} , r_{0}^{1} and r_{1}^{1} (P_x, P_y and P_z)
- Spin $\frac{3}{2}$: **15** polarisation parameters: $r_{.1}^{1}$, r_{0}^{1} , r_{1}^{1} , $r_{.2}^{2}$, $r_{.1}^{2}$, r_{0}^{2} , r_{1}^{2} , r_{2}^{2} , $r_{.3}^{3}$, $\frac{2}{r_{.2}^{3}}$, $r_{.1}^{3}$, r_{0}^{3} , r_{1}^{3} , r_{2}^{3} and r_{3}^{3} .

Spin observables for spin $\frac{3}{2}$ hyperons

The $p\overline{p} \rightarrow \Omega\overline{\Omega}$ reaction:

UPPSALA UNIVERSITET

15 polarisation parameters, **7** are accessible in $\Omega \rightarrow \Lambda K$ with an unpolarised beam and target.

3 polarisation parameters r_2^2 , r_1^2 , r_0^2 from the angular distribution of the Λ :*

$$\langle \sin\theta_{\Lambda} \rangle = \frac{\pi}{32} (8 + r_0^2 \sqrt{3})$$

$$< \cos\varphi_{\Lambda}\cos\theta_{\Lambda} > = -\frac{3\pi}{32}r_{1}^{2}$$

$$< sin^2 \varphi_{\Lambda} > = \frac{1}{4} (2 + r_2^2)$$

*calculated by Elisabetta Perotti, Uppsala U (2016)

UPPSALA

 $\langle \sin \phi_{\Lambda} \cos \phi_{\rm p} \rangle$ Four polarisation parameters can be $= \int I(\theta_{\Lambda}, \phi_{\Lambda}, \theta_{\rm p}, \phi_{\rm p}) \times \sin \phi_{\Lambda} \cos \phi_{\rm p} d\Omega_{\Lambda} d\Omega_{\rm p} =$ determined from the joint angular distributions of the Λ and the proton *: $= -\frac{3\pi^2 \alpha_\Lambda \gamma_{\Lambda} r_{-2}^3}{1024}$ $\langle (3\cos\theta_{\Lambda}-1)\sin\phi_{\rm p} \rangle$ $= \int I(\theta_{\Lambda}, \phi_{\Lambda}, \theta_{\rm p}, \phi_{\rm p}) \times (3\cos\theta_{\Lambda} - 1)\sin\phi_{\rm p}d\Omega_{\Lambda}$ р $= -\frac{\pi \alpha_{\Lambda} \gamma_{\Sigma} r_{-1}^3}{4 \sqrt{10}}$ π $\langle \sin \phi_{\rm p} \rangle$ $= \int I(\theta_{\Lambda}, \phi_{\Lambda}, \theta_{\rm p}, \phi_{\rm p}) \times \sin \phi_{\rm p} d\Omega_{\Lambda} d\Omega_{\rm p} =$ Ω $=\frac{\pi\alpha_{\Lambda}\gamma_{\Omega}}{160}\left(-4\sqrt{16r_{-1}^{1}}+\sqrt{10r_{-1}^{3}}\right)$ Κ $\langle \sin \phi_{\Lambda} \cos \phi_{\Lambda} \cos \phi_{\rm p} \rangle$ $= \int I(\theta_{\Lambda}, \phi_{\Lambda}, \theta_{\rm p}, \phi_{\rm p}) \times \sin \phi_{\Lambda} \cos \phi_{\Lambda} \cos \phi_{\rm p} d\Omega_{\Lambda} d\Omega_{\rm p} =$ $=\frac{\pi\alpha_{\Lambda}\gamma_{\Omega}}{\epsilon_{40}}\left(5\sqrt{6r_{-3}^3}+4\sqrt{16r_{-1}^1}\right)$ *Erik Thomé, Ph. D. Thesis and Elisabetta Perotti, private communication

Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

- Spin $\frac{1}{2}$ hyperons (Λ , Ξ , Λ_c) :
 - Polarisation.
 - Spin correlations and singlet fraction: $SF = \frac{1}{4}(1 + C_{xx} - C_{yy} + C_{zz})$
- Spin $\frac{3}{2}$ hyperons into spin $\frac{1}{2}$ hyperons ($\Omega \rightarrow \Lambda K$):
 - 7 polarisation parameters + degree of polarisation.

$$d(\rho) = \sqrt{\sum_{L=1}^{2j} \sum_{M=-L}^{L} (r_{M}^{L})^{2}}$$

CP violation in hyperon decays

- CP violation of baryon decays has never been observed.
- The $\overline{p}p \rightarrow YY$ process suitable for CP measurements (clean, no mixing)
- If CP valid, $\alpha = -\bar{\alpha}$ and $\beta = -\bar{\beta}$.
- CP violation parameters:

$$A = \frac{\Gamma \alpha + \overline{\Gamma} \overline{\alpha}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \approx \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}}$$

$$B = \frac{\Gamma\beta + \overline{\Gamma}\overline{\beta}}{\Gamma\beta - \overline{\Gamma}\overline{\beta}} \approx \frac{\beta + \overline{\beta}}{\beta - \overline{\beta}}$$

 $B' = \frac{\Gamma\beta + \overline{\Gamma}\overline{\beta}}{\Gamma\alpha - \overline{\Gamma}\overline{\alpha}} \approx \frac{\beta + \overline{\beta}}{\alpha - \overline{\alpha}}$

- More precise measurements needed.
- A accessible for Λ , Ξ and Λ_c .
- B, B' accessible for Ξ and Λ_c .
- Controlling systematics the main challenge.

- A lot of data on $\overline{p}p \rightarrow \Lambda\Lambda$ near threshold, mainly from PS185 at LEAR*.
- Very scarce data bank above 4 GeV.
- Only a few bubble chamber events on $\overline{p}p \rightarrow \overline{\Xi}\Xi$
- No data on $\overline{p}p \to \overline{\Omega}\Omega$ nor $\overline{p}p \to \overline{\Lambda}_c \Lambda_c$

* See e.g. T. Johansson, AIP Conf. Proc. Of LEAP 2003, p. 95.

• $\Lambda\Lambda\,$ almost always produced in a spin triplet state*:

$$SF = \frac{1}{4} (1 + C_{xx} - C_{yy} + C_{zz})$$

• Neither the quark-gluon picture (dotted) nor hadron exchange (solid and dashed) describe polarisation data perfectly. **

*PRC 54 (1996) 1877 ** Phys. Rep. 368 (2002) 119.

• $\Lambda\Lambda\,$ almost always produced in a spin triplet state*:

$$SF = \frac{1}{\Delta} (1 + C_{xx} - C_{yy} + C_{zz})$$

• Neither the quark-gluon picture (dotted) nor hadron exchange (solid and dashed) describe polarisation data perfectly. **

*PRC 54 (1996) 1877 ** Phys. Rep. 368 (2002) 119.

- Simulation studies using a simplified MC framework.
- Assume Day One luminosity of the HESR.
- Cross sections of $\overline{p}p \to \overline{\Lambda}\Lambda$ and $\overline{p}p \to \overline{\Lambda}\Sigma^o$ known near threshold.
- $\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$ measured with large uncertainty.
- Conservative theoretical predictions of $\overline{p}p \to \overline{\Omega}^+ \Omega^-$ and $\overline{p}p \to \overline{\Lambda}_c^- \Lambda_c^+$

Momentum (GeV/c)	Reaction	σ (µb)	Efficiency (%)	Rate (with 10 ³¹ cm ⁻¹ s ⁻¹)	
1.64	$\overline{p}p \to \overline{\Lambda}\Lambda$	64	10	30 s ⁻¹	
4	$\overline{p}p \rightarrow \overline{\Lambda}\Sigma^{o}$	~40	30	30 s ⁻¹	
4	$\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$	~2	20	2 s ⁻¹	
12	$\overline{p}p \rightarrow \overline{\Omega}^+ \Omega^-$	~0.002	30	~4 h ⁻¹	
12	$\overline{p}p \to \overline{\Lambda}_c^- \Lambda_c^+$	~0.1	35	~2 day ⁻¹	
				7	
		Gain a factor of 100 with inclusive measurement			

*Sophie Grape, Ph. D. Thesis, Uppsala University 2009, ** Erik Thomé, Ph. D. Thesis, UU 2012

Momentum (GeV/c)	Reaction	σ (µb)	Efficiency (%)	Rate (with 10 ³¹ cm ⁻¹ s ⁻¹)
1.64	$\overline{p}p \to \overline{\Lambda}\Lambda$	64	10	30 s ⁻¹
4	$\overline{p}p \rightarrow \overline{\Lambda}\Sigma^{o}$	~40	30	30 s ⁻¹
4	$\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$	~2	20	2 s ⁻¹
12	$\overline{p}p \rightarrow \overline{\Omega}^+ \Omega^-$	~0.002	30	~4 h ⁻¹
12	$\overline{p}p \rightarrow \overline{\Lambda}_c^- \Lambda_c^+$	~0.1	35	~2 day ⁻¹

- High event rates for Λ and Σ *.
- Low background for Λ and Σ *.

Gain a factor of 100 with inclusive measurement

- Even with conservative cross section estimates, Ω and Λ_c channels are feasible. **
- New efficiency studies using sophisticated MC framework underway.

*Sophie Grape, Ph. D. Thesis, Uppsala University 2009, ** Erik Thomé, Ph. D. Thesis, UU 2012

UPPSALA

UNIVERSITET

Good angular acceptance also for heavy hyperons \rightarrow important for polarisarion studies!

Results by Erik Thomé, Ph. D. Thesis, Uppsala University (2012).

UPPSALA UNIVERSITET

Prospects for PANDA at FAIR

- Parametrisation of spin variables using weights:
 - $P_{\Xi,y} = \sin 2\theta_{\Xi} \qquad C_{\Xi,xz} = \sin \theta_{\Xi} \qquad r_0^2 = \sin 2\theta_{\Omega} / \sqrt{3}$
- Simplifies MC framework including acceptance and detector resolution.

• The polarisation and spin correlations for Ξ and polarisation parameters of the Ω can be well reconstructed with PANDA.

Results by Erik Thomé, Ph. D. Thesis, Uppsala University (2012).

Time-line, hyperon spin dynamics with PANDA

- PANDA physics from **Day One**:
 - Spin observables of single- and double strange hyperons.
- **First years** of PANDA:
 - Polarisation parameters of Ω^{-} .
- Long-term projects with high luminosity:
 - Spin observables of $\Lambda^+_{\ c}$.
 - CP violation in Λ and Ξ decays.

Summary

- Strange hyperons probe the Strong Interaction in the confinement domain.
- Several open questions in baryon spectroscopy show that there is much more to learn on how quarks interact inside baryons.
- What happens if light quarks are replaced with heavier? Very little is known about the excited strange hyperon spectra.
- PANDA can fill a gap in the strange sector:
 - **Best** prospects for double- and triple strange hyperon spectroscopy.
 - **Only** possible experiment for spin observables in $\bar{p}p \rightarrow \bar{Y}Y$.

Summary and Outlook

- Production of strange and charmed hyperons probe QCD at two different energy scales.
- The role of spin in the strong interaction can be explored with hyperon spin observables.
- Polarisation parameters of $p\overline{p} \rightarrow \Omega\overline{\Omega}$ have been derived.
- Simulation studies show excellent prospects for antihyperon-hyperon channels with PANDA.

Time-line, hyperon physics with PANDA

- PANDA physics from **Day One**:
 - Single- and double strange hyperon spectroscopy.
 - Spin observables of single- and double strange hyperons.
- **First years** of PANDA:
 - Triple strange hyperon spectroscopy.
 - Polarisation parameters of Ω^{-} .
- Long-term projects with high luminosity:
 - Single charm baryon spectroscopy.
 - Spin observables of $\Lambda^+_{\ c}$.
 - CP violation in Λ and Ξ decays.

Thanks to:

Albrecht Gillitzer, Stefan Leupold, Vasiliy Mocharov, Elisabetta Perotti, Sophie Grape, Tord Johansson and Erik Thomé.

Backup

Spin observables for spin $\frac{1}{2}$ hyperons

Method of Moments

The expectation value or the moment of a function g(x) can be written $\langle g(x) \rangle = \int g(x) f(x \mid \theta) dx$

where $f(x|\theta)$ is a probability density function. p Example: A hyperon with polarisation P_n decaying into $p \pi^2$. Then ₽́^ $f(\theta_p \mid P_n) = \frac{dN}{d\cos\theta_p} \propto 1 + \alpha_{\Lambda} P_n \cos\theta_p$ $\frac{\pi}{\langle\cos\theta_{p}\rangle} = \int \frac{dN}{d\cos\theta_{p}} \cos\theta_{p} d\cos\theta_{p} = \int (1 + \alpha_{\Lambda}P_{n}\cos\theta_{p})\cos\theta_{p} d\cos\theta_{p} = \frac{\alpha_{\Lambda}P_{n}}{3}$

which means that the polarisation can be expressed as $P_n = \frac{3}{\alpha_{\star}} \langle \cos \theta_p \rangle$